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Fig. 1: Images collages are generated by our proposed method. With the same image collection, we collage it to various irregular
shapes.

Abstract—Image collage is a very useful tool for visualizing an image collection. Most of the existing methods and commercial
applications for generating image collages are designed on simple shapes, such as rectangular and circular layouts. This greatly limits
the use of image collages in some artistic and creative settings. Although there are some methods that can generate irregularly-shaped
image collages, they often suffer from severe image overlapping and excessive blank space. This prevents such methods from being
effective information communication tools. In this paper, we present a shape slicing algorithm and an optimization scheme that can
create image collages of arbitrary shapes in an informative and visually pleasing manner given an input shape and an image collection.
To overcome the challenge of irregular shapes, we propose a novel algorithm, called Shape-Aware Slicing, which partitions the input
shape into cells based on medial axis and binary slicing tree. Shape-Aware Slicing, which is designed specifically for irregular shapes,
takes human perception and shape structure into account to generate visually pleasing partitions. Then, the layout is optimized by
analyzing input images with the goal of maximizing the total salient regions of the images. To evaluate our method, we conduct
extensive experiments and compare our results against previous work. The evaluations show that our proposed algorithm can efficiently
arrange image collections on irregular shapes and create visually superior results than prior work and existing commercial tools.

Index Terms—Image collection visualization, image collage, irregular shape layout

1 INTRODUCTION1

Image is mentioned as the way people use to visualize what they want2

to share via mobile devices. With the evolution of social media plat-3

forms (e.g., Twitter, Instagram, Facebook, Google Photos, etc.), the4

need to share photos has become more attractive. An interesting way to5

visualize a photo collection is to collage them in an interesting or mean-6

ingful layout. The results may also be the way people use to represent7

the visual summary of their image collection with different purposes,8

for example, broadcast advertising (e.g., using the shape of a Kangaroo9

to visualize a collection of scenes in Australia), commemorating (e.g.,10

using the shape of a heart to visualize a collection of wedding scenes).11

Such research domain is called in terms image collage.12

This exciting research topic has been studied early by various ap-13
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proaches. Researchers in [17, 21, 33, 35] focus on preserving the 14

original aspect ratios of each image and missing the image content. 15

Other approaches [16, 25, 31] consider the content of images by trying 16

to fit only the salient cutouts of each image into the canvas as fully 17

as possible. In other words, their systems can generate a collage by 18

overlapping images without occluding salient regions. However, most 19

of these prior studies share the same difficulty in collaging image col- 20

lection to an arbitrary shape. That is, they are all restricted to rectangle 21

layouts. 22

Besides the above approaches, some commercial applications have 23

been released for image collage in recent years, such as Shape Collage 24

[4], FigrCollage [26], ShapeX [24], and Adobe [1]. With these applica- 25

tions, without any design experience necessary, people can craft their 26

very own collage and allow their creativity to bring all their beautiful 27

memories together. Nevertheless, they still suffer from some limitations. 28

The images in resultant collages are heavily occluded [4]. The cells 29

in the generated layout are too small and uniform (e.g., rectangles or 30

squares of the same size) [26]. This issue makes the method face a 31

fundamental trade-off between the image size and the accuracy of the 32

layout shape. That is, images in the collection may have to be scaled 33

down significantly to fully fit the layout. This phenomenon leads to 34

that the collages are not visually pleasing. In ShapeX [24], a uniform 35

grid is overlayed on the input shape without considering the shape 36

structure. Hence, the collage generated by this application not only 37

shares the same drawback with Shape Collage [4] and ShapeX [24] but 38

also yields unpleasing regions at the boundary regions. Han et al. [8] 39

attempt to collage on an irregularly shaped layout by first projecting 40

images onto a 2D circular region and locally moving images within the 41

target region. Hence, their method is designed to work for shapes that 42

are not far away from a circle, e.g. a heart or an apple. This method is 43
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not designed for highly irregular shapes (e.g. a shape with a hole in the44

middle). These results are shown in Fig.2.45

(a) Shape Collage [4] (b) Han et al. [8] (c) FigrCollage [26] (d) ShapeX [24]

Fig. 2: Example collages are generated by previous work and commer-
cial applications. The black silhouette above the collage is the input
shape.

This paper addresses the above problems and proposes an image46

collage on an arbitrary shape (abbreviated as ICAS) method, as shown47

in Fig.1. Our collaging technique considers both the input shape and the48

content information of the images in the given collection. This enables49

our method to be capable of generating visually pleasing collages. To50

achieve that, we propose an algorithm based on binary slicing trees,51

which shoulders the task of portioning the input shape into regions. To52

serve the visually pleasing collage, we define the subjects of images53

by an Image Content Analyzing process prior to collaging. To evaluate54

the effectiveness of our image collage approach, we test it with diverse55

input shapes and image collection. Appealing results are obtained56

from our evaluated experiments. We further compare our results to57

those of the previous works and existing commercial applications to58

demonstrate the advantage of our proposed framework.59

Our contributions are summarized as follows:60

• We propose a novel ICAS algorithm.61

• We develop a layout generation method, Shape-aware Slicing,62

that is especially useful to deal with the convex-concave surface63

of irregular shapes.64

• The optimization procedure we investigate in this current work65

enables such an image collage method to build a bridge between66

input shape, layout design, and visual content of image collection.67

• Various experiments with shapes and image collections demon-68

strate that our method is more accessible and can produce more69

appealing results. This allows ordinary users to be easier to visu-70

alize their beautiful memories together.71

2 RELATED WORK72

2.1 Image Collage73

We have already seen that the image collage methods can be categorized74

as rectangular and non-rectangular or content-aware and not content-75

aware. Another way to look at these works is how they arrange the76

images. Many works group images of similar content and place them77

in close proximity. Liu et al. [16] use t-SNE to embed each image78

onto a 2D canvas based on the feature vectors. Tan et al. [31] cluster79

images based on the correlation between images with the k-means80

algorithm and put them inside the same cell. Pan et al. [21] consider the81

importance and aesthetics of the image when placing the images, where82

important images are placed closer to the collage center. Song et al. [29]83

emphasize the use of the overall compositional balance of the collage84

and arrange the image according to the balance-ware metrics. Some85

works focus on image summary capability, in which representative86

images are selected first from a large collection of images and then87

visualized. Rother et al. [25] select top-ranking images according to88

their representativeness, importance, and object location. Pan et al.89

[21] greedily select images considering conciseness, diversity, and90

aesthetics. The latest work [35] proposes an innovative continuous91

tree representation to partition the canvas. This enables an end-to-end92

collage generation model to be trained with backpropagation. This93

formulation, however, can only be defined on rectangular canvases. 94

Another line of work focuses on interactive visualization of collections 95

of images. Nguyen and Worring [19] present a visualization scheme 96

for more than 10,000 images. Lekschas et al. [14] propose a framework 97

for visualizing and exploring small multiples including large image 98

collections. 99

In comparison with existing methods, our new method can be sum- 100

marized as non-rectangular and content-aware. Salient objects will be 101

preserved and placed according to shape structure. Important images 102

will be placed at the most salient location. 103

2.2 Shape Decomposition 104

Planar shape decomposition methods can be broadly categorized into 105

two classes. One tries to decompose shapes into convex polygons. 106

The other attempts to mimic how humans partition a shape based on 107

cognition research. 108

Earlier works [12, 15] usually focus on decomposing shapes into con- 109

vex parts. Conventional strict convex decomposition is a well-studied 110

problem, but it is not directly applicable to most shape decomposition 111

tasks. One of the shortcomings is that it will produce overly-segmented 112

parts. Latecki and Lakämper [12] observe the phenomenon that non- 113

convexity smaller than a certain scale is irrelevant to how humans 114

perceive a shape. Thus, they develop the DCE algorithm to control 115

the tolerance level of non-convexity. Lien and Amato [15] propose 116

Approximate Convex Decomposition, which decomposes shapes into 117

approximately convex parts. We do not use Approximate Convex De- 118

composition in this work, because, it will produce tiny partitions, which 119

are not suitable for collage generation. 120

Later researches on shape decomposition attempt to develop compu- 121

tational models based on psychophysical findings. The most recognized 122

rules derived from those findings are the minima rule [10], the short-cut 123

rule [28], along with the definition of part-cuts[27]. Luo et al. [18] 124

propose an optimization model that realizes the aforementioned rules. 125

Papanelopoulos et al. [23] make effective use of medial axis represen- 126

tation and capture most of the rules and saliency measures suggested 127

by psychophysical studies, including the minima and short-cut rules, 128

convexity, and symmetry. Papanelopoulos et al. [23]’s work, referred 129

to as MAD, is grounded in rigorous mathematical reasoning instead of 130

relying heavily on heuristic rules like earlier methods. As a result, it 131

is easier for us to adapt it for our own goal, in this case, generating 132

image collages. Furthermore, it does not require complex optimization 133

processes like the one in De Winter and Wagemans [6]’s work and it 134

achieves better performance in the public dataset than other works. Our 135

shape decomposition method utilizes this concept as the baseline to 136

decompose the input shape into convex polygons. Thereafter, we inves- 137

tigate a novel slicing algorithm to generate the balanced and visually 138

pleasing layout. 139

Fig. 3: System framework

3 SYSTEM FRAMEWORK 140

The framework of our ICAS system is illustrated in Fig.3, which con- 141

sists of three main processes: Image Content Analyzing, Shape Decom- 142

position, and Shape-aware slicing and Optimization. The proposed 143

scheme takes as input an arbitrary shape and an image collection. Our 144
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Fig. 4: Illustration of Step one through five of MAD. (a) and (b) are the interior medial axis and exterior medial axis.

goal is to generate an information-rich and beautifully-arranged shaped145

image collage.146

Image Content Analyzing is proposed to define the important infor-147

mation of images before placing them in the layout. This process saves148

the resultant collage from poor aesthetics, e.g., the important objects are149

cropped out. This phenomenon is mentioned as a drawback in previous150

approaches [4, 8, 24, 26]. In our approach, the image collection is first151

passed through a salient object detection model. Accordingly, each152

image is associated with an importance score.153

Shape Decomposition shoulders the task of portioning the highly ir-154

regular shape into regions, which are convex polygons. As we discussed155

in the prior session, the layout in an arbitrary shape is challenging, and156

it is also the key difference between our current method and previous157

works.158

Shape-aware Slicing and Optimization is the main process in159

our workflow. The shape is further partitioned such that each region160

corresponds to an image in the given collection. We achieve this by161

first proposing Medial axis-based Binary Slicing Tree (MABST) and162

Shape-Aware Slicing(SAS) operations as a new way to partition an163

irregularly-shaped canvas. Then, we optimally select an optimal layout164

that can maximize the important region of a given image collection.165

Finally, our customized image warping technique is applied to create166

the final collage.167

4 METHODOLOGY168

4.1 Image Content Analyzing169

To build a bridge between the image content and the layout design,170

we analyze the content of images in the given collection. Analyzing171

the content of images in the given collection enables our system to172

understand the semantics of individual images and the visual topic of173

the collection. To analyze the content of images in the collection, we174

adopt a supervised salient object detection model [22]. The subject175

for each image is simplified as a salient box Sb = [bx1,by1,bx2,by2]176

containing all the salient pixels. Such a box is used to represent the177

important region of an image. We choose a bounding box representation178

instead of using the saliency map directly because the maximization179

of a rectangle’s area inside a convex polygon can be solved efficiently180

with linear programming. As we will show in the coming section, we181

need to calculate this value multiple times when we are searching for182

the optimal layout.183

A plus of our collage system is that we allow users to designate184

the photos in the collection they are most interested in. We take such185

photos into account when placing the collection in the layout. For this186

reason, we encourage the users to perceptually choose the photos that187

are dominant in the collection in terms of visually pleasing or aesthetic188

factors. We record the images designated by the users and assign them189

a high importance score. In the cases that the users do not choose, we190

adopt NIMA [30] to measure their aesthetic scores. As a result, with a191

given collection, we have a set I = {Ii}, i = 0, . . . ,NI , NI is the number192

of input images. Each Ii is a tuple of βi and Rm
i which respectively193

denotes the image’s index and importance rank. Note that only the194

portion of images in the salient box will be assessed since the images195

are usually not fully visible in the final collage.196

Three major benefits can be gained from this analysis. The bounding 197

boxes help us to find the tailored cell that could be fitted to the area 198

of the important region in an image. Second, this saves the subject 199

in the images from cropping. Third, ranking the photos according to 200

aesthetic scores and integrating them with the layout serves semantic 201

and visually pleasing collage results. 202

Fig. 5: (a) Before discarding cuts, (b) Discarding cuts that have higher
protrusion strength

4.2 Shape Decomposition with medial axis 203

Shape decomposition algorithm decomposes arbitrary input shapes 204

into manageable pieces, i.e. convex parts. The decomposition is ac- 205

complished by determining a set of part-cuts defined as line segments 206

that divide the shapes into pieces. We adopt the state-of-the-art shape 207

decomposition algorithm based on the medial axis (so-called MAD), 208

which is introduced in Papanelopoulos et al. [23]. Before diving into 209

shape decomposition algorithm, we briefly overview the medial axis 210

used in their approach. 211

Given a planer shape X⊂ R2, the distance map D(X) : R2 7→ R is a 212

function mapping each point z ∈ R2 to 213

D(X)(z) = inf
x∈∂X

∥z− x∥, (1)

where ∥ ∥ denotes the l2-norm. For z ∈ R2, let 214

π(z) = {z ∈ ∂X : ∥z− x∥= D(X)(z)} (2)

be the set of points on the boundary at a minimal distance to z. This is 215

called the projection set of z on the boundary. Each x ∈ π(z) is called a 216

projection of z. 217

The medial axis of shape X is a set of points of X with more than 218

one projection points, which is formulated as: 219

M(X) = {z ∈ X : |π(z)|> 1}. (3)

This set can be interpreted as a finite linear graph in R2 with the points 220

that have exactly two projections as edges and others as vertices [5]. 221

Fig.4 visualizes these mathematical definitions and the MAD algorithm 222

step by step. A vertex is called as an end vertex if it has degree one in 223

the graph. Similarly, the exterior medial axis of X can be defined as the 224

medial axis of its complement R2 \X. 225

The medial axis carries information that is critical for decomposing 226

irregular shapes. According to the minima rule [10], part-cut endpoints 227
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should be the points of negative minima of curvature of the shape228

boundary, namely the concavity of the shape. It can be observed that the229

end vertices of interior (respectively to exterior) medial axis correspond230

to convex (respectively to concave) corners. More specifically, end231

vertices and their projections alone can determine the position, spatial232

extent, orientation and strength of the convexity (or concavity).233

Once the concave corners are located (Step 2 in Fig.4), part-cuts234

candidates can be formulated as line segments whose endpoints are the235

projections points of the interior medial axis and the starting point is236

the projection point in the concave corner (Step 3 in Fig.4). We call237

this resultant part-cuts as raw cuts. The raw cuts that humans are more238

sensitive to are prioritized (Step 4). Multiple measures are proposed239

to quantify the human sensitivity, i.e. protrusion strength, flatness,240

expansion strength and extension strength. Among them, the protrusion241

strength of a cut is the most critical metrics and is used in many other242

papers [11, 36]. It can affect the final appearance of our collage and is243

defined as the ratio of its length to the length of its corresponding arc244

along the boundary. In particular, the protrusion strength controls the245

level of details for our decomposition. The cuts that have protrusion246

strength greater than the threshold τp are discarded, as shown in Fig.247

5. In all the examples in our paper, τp = 0.75. In the final step (Step248

5), the candidate cuts are selected greedily until convexity is achieved249

at every concave corner or all candidate cuts are selected. The final250

decomposition result is shown in Fig.4, Step 5.251

The goal of our method in our current application is to generate252

a balanced and visually pleasing layout with a defined number of253

cells. Thanks to MAD, we can control the significant convex-concave254

contours on shapes. However, to collage an image collection with255

diverse content and numerous images, MAD by itself is not sufficient to256

deal with these challenges. Thus, using MAD as the preprocessing step257

to initially decompose the input shape, we then seek a novel method to258

slice the decomposed parts to a satisfying layout. In the coming section,259

we present our approach to tackling this challenge.260

4.3 Shape-Aware Slicing261

The resultant parts obtained by MAD are convex polygons. We call262

each of them in the term patch. We tackle the aforementioned challenge263

by proposing a new shape-aware slicing method that operates on each264

patch. Let Np be the number of patches, and NI be the number of265

images in the given collection. It is assumed that NI > Np. The method266

aims at portioning Np into cells (Nc) such that Nc = NI . Our early267

experiments show that NI >> Np in most cases. Yet, if the contrast268

cases occur, merging adjacent patches by itself is sufficient to yield a269

plausible layout.270

Our slicing method is inspired by a strategy of floorplan design271

[32]. This classical method is introduced for canvas partition based on272

slicing structure and a full binary tree. Such a slicing structure aims273

to recursively divide a rectangular canvas into smaller rectangles by274

horizontal splits and vertical splits. This strategy is then widely used to275

generate layouts in many image collage systems [17, 21, 33, 35].276

The challenge here is that we design the current system to handle277

various irregular shapes and orientations. Simply applying the slicing278

structure algorithm [32] is insufficient, as the example in Fig.6-(a).279

Some cells are small, and some cells are not part of the shape. Hence,280

our SAS is designed differently from those in prior techniques [2, 6, 28].281

It is observed that although the canvases are probably in various shapes282

and orientations, there is an intuitive horizontal and vertical direction.283

Such directions are relatively related to the medial axis concept, which284

we discussed in the earlier section. Therefore, we integrate the medial285

axis of the given shape to construct the binary tree, called Medial286

Axis-based Binary Slicing Tree (MABST).287

We utilize the medial axis of X to define the pseudo directions that288

mimic the horizontal and vertical directions in a rectangular canvas.289

They are respectively termed Axial and Crosswise. For each point z∈X,290

we define the closest point of z in the medial axis set M(X) as:291

Φ
(
z,M(X)

)
= argmin

m∈M(X)
∥z−m∥ (4)

Accordingly, Axial and Crosswise of z are defined as:292

• Axial(z): The tangent vector of the medial axis at Φ
(
z
)
. This 293

is analogous to the horizontal cuts in the rectangular case. In 294

practice, any one of the tangent vectors will suffice. 295

• Crosswise(z): A vector orthogonal to the Axial direction. This is 296

analogous to the vertical cuts. 297

We visualize the pseudo directions in Fig.8-(a). 298

Fig. 6: Comparison on generated layouts. (a) layout by linear slicing,
(b) and (c) are by our SAS algorithm.

Once the pseudo directions are defined, we initialize a MABST for 299

each patch. We determine the number of images S to be assigned to a 300

certain patch according to the patch’s area. Given a shape X with a set 301

of patches P = {p1, . . . , pNp}, we define Si of patch Ci as: 302

Si =
[
NI ·

Area(pi)

Area(X)

]
, (5)

where [ ] is the notation of the nearest integer function. 303

For a MABST, each leaf represents a cell; and thus, the leaf count 304

is the number of cells that matches Si. Formally, a MABST is a re- 305

cursive data structure. Each tree node T, encompasses information of 306

(1) cutting direction DT (Axial cut A and Crosswise cut C), (2) the 307

corresponding polygon GT, (3) left child LT, and (4) right child RT. 308

Besides the number of leaf nodes, we also consider the balance of the 309

tree when initializing the MABST. Obviously, a balanced tree yields 310

even-sized cells and vice versa. Uneven-sized cells could be used to 311

place less important images, such as landscape images. In practice, a 312

splitting command propagates from the root node to a leaf node and 313

splits a leaf node into two new leaf nodes. We repeat this operation 314

Si− 1 times starting from a single node. We select a branch for the 315

splitting command to propagate based on the probability of Balanced 316

(γb) and Unbalanced (γu). γb is to select the branches with the least 317

height, i.e., the number of edges on the longest path from the tree’s root 318

node to a leaf. Meanwhile, γu is to select the branches with the biggest 319

height. However, we do not always want the MABST to become a 320

degenerate linear path. Hence, some randomness is added with greater 321

probability (i.e., 70% in our experiments) to choose the branch with 322

the biggest height. Two examples of MABSTs in this stage are shown 323

in Fig. 7(a). So far, the MABST is not fully configured, i.e. the cut 324

direction and the image association is not yet decided. The process 325

of assigning images to leaf nodes will be discussed in Section 4.4. In 326

Section 4.5, we will discuss how to decide the cutting direction for each 327

node. 328

The core of our layout generation is the Shape-aware slicing algo- 329

rithm SAS. SAS maps a MABST to a 2D collage layout. Let’s first 330

assume that we have a fully-configured MABST. SAS recursively iter- 331

ates through every node T and divides the polygon GT according to the 332

cutting direction (A or C) with the help of a function Dividing Polygon 333

DPG. DPG divides a polygon by cutting it in half with a line passing 334

through the polygon’s centroid with the slope determined by the Axial 335

or Crosswise direction. Since the polygon is convex, we can be sure 336

that the centroid is inside the polygon, and there are precisely two 337

resultant polygons. After the SAS operation, we simply collect all the 338

polygons from leaf nodes as our final layout. The pseudo-code of the 339

SAS and DPG algorithm are presented in Algorithm 1 and Algorithm 340

2, respectively. Note that in Line 7 and 8 of the SAS algorithm, there 341

is an additional parameter that we need to decide, namely the order 342

of two child nodes. We can assign the polygon p1 to the left child 343
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Fig. 7: The workflow of our layout generation process.

(a) (b)

Fig. 8: (a) visualization of pseudo directions (yellow arrows), and (b)
visualization of the process of finding the center. Black points are on
medial axis. Projections of them are v1, v2, v3, and v4, respectively.
It can be observed that projections of the center, v3 and v4 have the
maximum Chord residual.

and the polygon p2 to the right child and vice versa. This results in344

two different collage layouts. This decision will also be discussed in345

Section 4.5.346

Algorithm 1: SAS function

1 Function SAS(T , M(X)):
Input :Tree node: T , Medial axis: M(X)

2 if T is not a leaf then
3 if DT is A then

/* A split */
4 p1, p2←DPG(GT , M(X), A);
5 else

/* C split */
6 p1, p2←DPG(GT , M(X), C);
7 LT .G← p1 ;
8 RT .G← p2;
9 SAS(LT , M(X));

10 SAS(RT , M(X));

We show two layouts generated by our SAS algorithm in two sample347

shapes (e.g., character “C” and Panda) in Fig.6. We can see that SAS348

performs much better than the classical slicing algorithm on the shape349

of character “C”. Especially, Panda is a challenging shape since it has a350

large convex-concave contour. Even so, SAS still yields a balanced and351

visually pleasing layout. In particular, the elements in the generated352

layout, so-called cells, are divided relatively evenly, and the specific353

regions (e.g., the ears or the legs) are well sliced. More results and354

comparisons are exhibited in the later experimental result section.355

So far, we have introduced the concept of MABST and the mapping356

from trees to layouts. Np MABSTs are initialized such that each has357

Si leaf nodes. Before we arrive at a final slicing tree, we need to take358

image property, i.e. aspect ratio, into consideration. We will discuss359

Algorithm 2: DPG function

1 Function DPG(G, M(X), D):
Input :Polygon: G, Medial axis: M(X), Cutting

direction: D
Output :Two polygons p1, p2 result from the

division
2 if D is A then
3 ct← G.centroid;
4 slope← Axial(ct);
5 dividing line← a line pass through ct with slope;
6 p1, p2← G divided by dividing line;
7 return p1, p2
8 else

/* D is C */
9 ct← G.centroid;

10 slope←Crosswise(ct);
11 dividing line← a line pass through ct with slope;
12 p1, p2← G divided by dividing line;
13 return p1, p2
14 end

how we assign images to a MABST in Section 4.4. 360

4.4 Image Assignment 361

We consider two factors when we assign images to leaves of the MAB- 362

STs: (1) Leaf nodes that are higher up in the tree is larger. The images 363

with higher importance score should be assigned to larger cells, which 364

are more prominent. (2) The images with higher importance score 365

should be placed closer to the center of the shape, which attracts hu- 366

mans’ attention. For example, the ear and feet of the panda shape is 367

less prominent. We implement this idea by ranking MABSTs in terms 368

of their inverse distance to the shape’s center. 369

Intuitively, leaf nodes that are higher up in the trees are larger. But 370

to define which node is higher, we can not directly use the height 371

definition of a tree node since every leaf node has height zero. Instead, 372

we define a quantity called elevation of a node, which is defined as the 373

height of the whole tree minus the depth of that node. The numbers in 374

Fig. 7(a) shows the elevation of the nodes in two trees. 375

The elevations of the leaf nodes are compared across all MABSTs. 376

We further rank leaf nodes with the same elevation by their corre- 377

sponding patches’ distance to the center. Determining the center of an 378

arbitrary shape is not trivial. For example, the centroid of a shape is not 379

necessarily inside the shape. Hence, we adopt Chord residual [20] to 380

determine the center of an arbitrary shape. Given a line segment within 381

the shape connecting two points vi and v j on the shape boundary B (as 382

shown in Fig.8-(b)), Chord residual of them is formulated as: 383

CR(vi,v j) = distB(vi,v j)−Length(viv j), (6)

where distB denotes the distance along the boundary B. Accordingly, 384

given the medial axis of a shape, the center of the shape is formulated 385

as: 386

center = argmax
m∈M(X)

CR(vi,v j) | vi,v j ∈ π(m), (7)
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where π(m) is the projection set, which was discussed earlier in section387

4.2. We note here that the Chord residuals decrease as we move away388

from the center along the medial axis, as illustrated in Fig.8-(b).389

The prominence of a certain patch PP (and correspondingly the390

prominence of a MABST) can be expressed in terms of the inverse of391

the distance to the center. The distance term is the sum of two distances:392

(1) the centroid of the patch pi, denoted by pe
i to its projection on the393

medial axis Φ(pe
i ), and (2) the distance along the medial axis from394

center to Φ(pe
i ). Formally written as:395

PP(pi) =
1

Length(pe
i Φ(pe

i ))+distM(X)(center,Φ(pe
i )
, (8)

where distM(X) denotes the distance along the medial axis of the shape396

X; Φ(.) is the function in Equation (4).397

Given the image importance rank Rm, we greedily select a leaf398

node of the highest elevation from all MABSTs and assign the most399

important image to it. We break the tie with the patch prominence400

PP. If elevation and patch prominence are equal, images are assigned401

sequentially from left to right. This will lead to images of similar402

importance being placed together, which can improve informativeness.403

The MABST with images assigned is illustrated in Fig. 7(b).404

4.5 Optimal Tree Search405

We now find the optimal configuration for our slicing tree. The config-406

uration O for a tree T refers to two things: (1) cutting direction Di and407

(2) the order of two children Ki for ST −1 inner nodes, where ST is the408

number of leaf nodes of T . We aim to find the layout structure that can409

maximize the total area of the maximum salient boxes Sb∗ of all images.410

The problem is illustrated in Fig. 9. It can be seen that the bottom right411

layout in Fig.9 has the largest objective value because two salient boxes412

are maximized. Formally, the optimization step determines an optimal413

configuration O∗414

O∗ = argmax
Di,Ki

Earea, (9)

where415

Earea =
ST

∑
i=1

Area(Sb∗i ) (10)

Note that finding Sb∗i itself is an optimization problem. Sb∗i is defined416

as a rectangle of a maximum size that is fully inside a convex polygon417

and has the same aspect ratio as Sbi, as shown in Fig. 9. This problem418

can be efficiently solved using linear programming by representing419

convex polygons as the intersection of half-planes.420

To find the optimal tree configuration O∗, we need to go through421

every possible configurations and find the best set of decision variables422

Fig. 9: The process of search for the optimal configuration for a tree.
Four instances of the trees are shown alongside the corresponding
layouts. A and C on the tree nodes represent the cutting direction and
we use thicker edges to denote the larger polygons.

with the largest Earea. However, for a S-leaf-node tree, there are 4S−1
423

ways to configure the tree because each non-leaf node (inner node) has 424

four possible configurations (Fig. 9). In other words, the search space 425

grows exponentially with the number of leaf nodes, which becomes 426

intractable even for modest S. 427

We observe that nodes that are higher up in the tree correspond to 428

rougher cuts in the final layout. This rougher cuts has less contribution 429

to the final shapes of the leaf nodes, especially for every deep leaf 430

nodes. For example, whether we select a Axial or a Crosswise cut 431

for our first cut matters little when we intend to fit 50 cells inside this 432

shape. Using this observation, we propose a simple strategy to reduce 433

the search space by pre-configuring the inner nodes that have elevation 434

higher than τe, where τe is adjustable based on the trade-off of quality 435

and speed. It is clear that the higher the τe the closer it is to the original 436

brute-force search and vice versa. 437

To pre-configure the cutting direction for an inner node, we project 438

the polygon associated with that node along the Axial and Crosswise 439

axis and compare their dimension in these two directions. If the dimen- 440

sion in the Axial axis is greater, a C cut is used. Otherwise, A cut is 441

used. This is analogous to splitting a tall rectangle with a horizontal 442

and dividing a wide rectangle with a vertical in the rectangular case. 443

This prevents the resultant rectangles from having extreme aspect ratios, 444

which may not be good for the quality of the cells. Fig.10 shows that 445

using this strategy can greatly speed up the search time and achieve 446

good objective values. From the experiments, setting τe = 3 can con- 447

sistently achieve more than 90% of the optimal results for all leaf node 448

counts, which is considerably better than fully random configuration 449

(the green line in Fig.10). All the results in latter part of this paper use 450

this settings. 451

Triangle Penalty. The cells generated with SAS are usually quadri- 452

laterals (except for cells on the boundary). But sometimes there will 453

be triangles and these triangular cells tend to stand out from the rest 454

of the shapes, which negatively impacts the uniformity of the cells. 455

Consequently, we add a triangle penalty term ptriangle to our objective 456

function to discourage the optimization function from selecting trian- 457

gular cells. We empirically set this penalty to 0.8 in our experiments to 458

gain a balanced layout for arbitrary input shapes. 459

ptriangle(polygon) =

{
0.8 polygon is a triangle
1.0 otherwise.

(11)

We penalize its area term in the objective function by ptriangle: 460

Earea =
ST

∑
i=1

(Area(Sb∗i ) · ptriangle(G)), (12)

where G is the polygon associated with that leaf node. 461

For the time complexity, the brute-force search is O(4n). Using our 462

strategy, we can reduce it to O(n), which is verified by the linear trend 463

in Fig. 10. For example, if we have a 8-leaf tree and we set τe = 1, 464

we only need to configure 8/2 inner nodes that is immediately above 465

the leaf nodes. Each inner node has 4 configurations. The total search 466

space is 41 ·8/2 since these four nodes are independent. For n leaf-node 467

tree the search space is 41 ·n/2. For τe = 2, the number is 43 ·n/4. In 468

general, the size of the search space is 42τe−1 ·n/2τe , which is linear in 469

terms of n. 470

4.6 Cell Filling 471

Filling the cells with the assigned image while preserving the main 472

subjects of the image in the estimated box is the goal of this session. 473

For example, in Fig.11, after warping, the cat in (a) is still similar to the 474

cat in (c), but the cat’s neighboring region area in (c) is warped to fill 475

the cell. As the optimization is already successful in finding the best 476

fit cell for images and maximizes the area of salient box Ti on the cell, 477

a lightweight strategy can resolve the problem of filling the cell here. 478

We consider two cases: (1) the cell is filled by image content and (2) 479

the reverse case. For the first case, we simply crop the image along the 480

boundary of the cell, as shown in Fig.12-(c). For the second case, we 481
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Fig. 10: The trade-off of execution time and solution quality with
different searching strategies. Optimal indicates the use of brute force
search.

Fig. 11: Results with optimization: (a) Image in the collection with the
detected bounding box Sb (blue rectangle); (b) estimated box T in cell
to make Sb fit T ; (c) Filling the cell by warping. (d) and (e) are failed
results without optimization: object in image is cutout to fit the cell (d);
fail to assign a tailored cell to the image (e).

adopt the warping of affine transformation to fill the image content to482

the rest of the cell. We elaborate as follows.483

We denote the rectangle that covers an image I is D with four484

vertices V1,V2,V3,V4; and the image I has a bounding box Sbi =485

[bx1,by1,bx2,by2]. We generate the delaunay triangulations for the486

convex hull formed by the edge of Sbi and D, see Fig12-(a). We denote487

this triangle set as Ai = {ak},k = 1, . . . ,8. In the corresponding cell488

C of I, we construct a rectangle H (with four vertices H1,H2,H3,H4)489

that covers C based on the convex vertices (Fig.12-(b)). Similarly, we490

generate the delaunay triangulations of the convex hull formed by the491

edge of T and H. We denote this triangle set as Ac = {ack}. To fill492

the image to the cell, we aim at warping ak to ack. Theoretically, the493

textures of pixels p′ ∈ ack are formulated as:494

p′(x′,y′) = ζ (p(x,y)), (13)

where p(x,y)∈ ak, ζ (.) is the warping function of affine transformation495

which warps ak to ack.496

Fig. 12: Two cases of filling cell. Warping triangle ak in (a) to ack in
(b). (c) is the sample case of cropping in which the bounding box is in
the cell and there does not exist any empty space in the cell.

5 EXPERIMENTAL RESULTS 497

5.1 Experiment parameters 498

Experimental data In our experiments, we have collected 73 different 499

shapes and 6 image collections. The shapes are from MPEG-7 Core 500

Experiment CE-Shape-1 Test Set [13], a dataset commonly used in 501

shape research [3, 9, 34]. MPEG-7 contains 1,400 shapes belonging 502

to 70 categories. Since the shapes in each category are similar, we 503

select one shape from every category as our testing shapes. Shapes that 504

are unsuitable as a collage contour e.g. containing too many broken 505

or small pieces are removed. Because most of the shapes in MPEG- 506

7 dataset are not aesthetic and intuitive, we additionally consider 11 507

commonly used shapes e.g. dogs and cars. The 73 shapes are presented 508

in the supplementary materials. For image collection, we use the AIC 509

dataset proposed by Yu et al. [35], which has more than 500 image 510

collections with more than 18,000 images. The size of every collection 511

in this dataset ranges from 10 to 100. In AIC, each image is associated 512

with one category and one salient mask, which are useful for conducting 513

our experiments. We only use a small subset of the AIC dataset, which 514

is also listed in supplementary materials. 515

Implementation details Images are first analyzed by [22] and [30], 516

which usually takes one second per image on NVIDIA GTX1080Ti. 517

The rest of our system runs on Intel Core i7-8700 with 32GB RAM. 518

The time statistics are shown in Fig. 13. The overall execution time to 519

generate one collage ranges from 10 to 20 seconds depending on image 520

collection sizes. Our SAS & Optimization step takes under six seconds, 521

which grows linearly in terms of number of input images. The other 522

two steps i.e. MAD and cell filling in total take around 10 seconds 523

and remain (near) constant for all image counts. To access our results 524

and dataset, please visit our project website http://graphics.csie. 525

ncku.edu.tw/shapedimagecollage/. 526

Fig. 13: Execution time of various steps of our method including MAD,
SAS and Optimization and cell filling.

5.2 Our Results and Discussion 527

To evaluate our method, we exhibit our generated collage results in 528

Fig.21. Some of these shapes have been used in prior research and 529

commercial applications. Yet, in our study, with our SAS algorithm in 530

generating the layout, appealing results can be generated in a balanced 531

and visually pleasing collage. Besides, with our collaging strategy, i.e., 532

considering both image content and the input shape in optimizing, the 533

subjects of images can be captured and preserved well in cells. We 534

visually show our system’s ability with the competition on the results 535

of prior works in the coming subsection. 536

Balanced layout. One of the interesting factors that contribute 537

to the appealing results in this work is our proposed SAS algorithm. 538

SAS excels in various aspects. First, generating realistic layouts with 539

challenging shapes: let us take an example with Panda (Fig.14) as the 540

example. The previous works linearly divide the shape into rectangles 541

and squares, this causes the artifacts at the boundary, i.e., the boundary 542

cells appear in form of a tiny part of other cells. That is the reason there 543

exist several “useless” tiny cells surrounding the boundary as they are 544

too small to collage meaningful content (we highlight this phenomenon 545

in red rectangles in Fig.14-(a)). Reversely, our SAS algorithm considers 546

the convexity and concavity of polygons when slicing the shape; thus, 547

the generated layouts are more realistic and eliminate the “useless” 548

cells. For example, the ears of the panda are well sliced and not too 549

tiny to visualize the content in that cell. Second, the style of the cell is 550

consistent across the layout. Since the MAD and SAS both are based on 551

the medial axis, they have a consistent partitioning style. In contrast, if 552

http://graphics.csie.ncku.edu.tw/shapedimagecollage/
http://graphics.csie.ncku.edu.tw/shapedimagecollage/
http://graphics.csie.ncku.edu.tw/shapedimagecollage/
http://graphics.csie.ncku.edu.tw/shapedimagecollage/
http://graphics.csie.ncku.edu.tw/shapedimagecollage/
http://graphics.csie.ncku.edu.tw/shapedimagecollage/
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any other tessellation techniques that have no knowledge of the medial553

axis are used, there will be conflicting cell styles. For example, Fig.554

15-(a) is the cells generated by applying centroidal Voronoi tessellation555

[7] after MAD. There is a clear trace of two distinct processes i.e.556

the linear division style of MAD and the honeycomb style of Voronoi557

tessellation, whereas SAS integrates with MAD seamlessly as shown558

in 15-(b). Third, the number of cells can be precisely controlled and559

match the exact volume of the collection. This aspect is owning to560

being aware of the area in each well-defined region when constructing561

the MABSTs. Without a clear understanding of the shape, previous562

methods use an indefinite number of images to fill the canvas. That563

is the reason there exist several images appearing many times in the564

resultant collage in previous work (yellow rectangles in Fig.14-(a)). In565

contrast, the number of cells in our generated layout is equal to the566

volume of the set; and thus, the collage can fully visualize the story of567

the given collection.568

Fig. 14: Visualizing the differences in collage results with layouts
generated by linear slicing (a) and our SAS algorithm (b) on Panda
layout.

Fig. 15: (a) Apply centroidal Voronoid tessellation in place of SAS. (b)
Using SAS.

Semantic collage. The major difference between our proposed569

scheme and prior work and commercial applications is the integration570

of the relation between the image content and layout structure. This571

enables our system to generate results in a harmonious and visually572

pleasing way. The balanced and visually pleasing aspects are demon-573

strated as the regions that attract human focus are collaged by the574

images with a higher interest in the collection. As shown in Fig.14, the575

results in the prior methods fail to connect the semantics of the collec-576

tion to the layout. That is, the region highlighted in yellow is collaged577

by the images with the background dominating, while the images with578

major objects are placed at the boundary. Thus, the important objects579

in images are cropped in these cells (highlighted in blue rectangles).580

In contrast, in our results, the higher interested images are collaged in581

the regions which attract human focus while the landscape scenes are582

placed at the boundary areas.583

Adaptive to various shapes, cell counts and sizes of image collec-584

tion. Being able to deal with arbitrary shapes consistently is challeng-585

ing. For example, Voronoi tesselation is ill-defined on concave shapes.586

In sharp contrast, thanks to MAD, our method can decompose shapes587

into convex parts. The other contributing factor is our tree slicing struc-588

ture. Our tree slicing structure allows us to flexibly control the number589

of cells and the relative size of each cell. This aspect explains why tree- 590

based methods are standard in image collage research. However, the 591

difference is that we generalize it to irregular canvas. Fig. 20 exhibits 592

these interesting results. In particular, on the same input shape, we can 593

generate even-sized and uneven-sized layouts while maintaining the 594

balance of the resultant collage. Or, also on this shape, we can produce 595

appealing collages with different sizes of collection (e.g., 15 images 596

and 25 images are used in this example.) 597

Effect of Parameter Settings. Balance of our layout is one of the 598

aspects that affects the final collage results. To partition a given shape 599

into a balanced layout, our scheme integrates two algorithms, MAD and 600

SAS. Being sensitive to the different parameters in these algorithms is 601

the issue we consider when configuring our system. More specifically, 602

the changes in the protrusion strength threshold in MAD and the γu
603

probability in SAS have an impact on the results. Although the impact 604

is minor in both MAD and SAS, the changes in these parameters have 605

some visible effect on our layout generation. Fig.16-(a) is the result 606

with Unbalanced γu in our SAS. Fig.16-(b) is the result when the 607

protrusion strength threshold τ in MAD is increased from 0.75 to 0.9, 608

allowing more details to be decomposed. It can be seen that the horn 609

details are more visible (pointed out by arrows). However, for shapes 610

with lots of fine details, e.g. tree leaves, τp should be set lower to 611

avoid an excessive amount of noise. In Fig.16-(c), the probability for 612

γu (in SAS) is increased from 70% to 90% creating higher contrast 613

in cell sizes i.e. a large cell in the middle and tiny cells highlighted 614

with red color. Nevertheless, users are not encouraged to set γu above 615

90% as it will create cells that is too small to be visible. Lastly, when 616

choosing these parameters, users can also take into consideration the 617

importance distribution of the image collection. For example, if the 618

image collection has a large amount of less important images, we can 619

use the parameters that create smaller cells, as discussed earlier, for 620

these images.

Fig. 16: (a) Our result using Unbalanced γu on deer shape. (b) Result
when increasing the protrusion strength threshold τ to 0.9. (c) Increase
γu probability from 70% to 90%.

621

5.3 Ablation study 622

Verify the effectiveness of MAD. We used MAD as our first step in 623

dealing with complex shapes. We test our system without the use of 624

MAD. The result is shown in Fig. 17. It can be seen that many objects 625

are heavily cropped (highlighted in red), especially in concave corners. 626

Furthermore, without MAD we cannot precisely estimate how many 627

images at each region. The result is that cells might end up having very 628

different sizes. The cells highlighted in green are considerably smaller 629

than other larger cells. 630

Verify Axial and Crosswise direction in SAS. One of the key 631

features of SAS is the use of medial axis. We test the SAS without 632

the use of Axial and Crosswise and use horizon and vertical direction 633

instead. Balanced strategy is used and everything else is kept the 634

same. The difference is illustrated in Fig. 18. Without using Axial and 635

Crosswise direction, the algorithm has trouble finding the most intuitive 636

way to slice the C shape and the spoon shape, resulting in cells that are 637

less uniform in size. Moreover, it suffers from the same drawback as 638

Voronoi tessellation i.e. different partitioning styles. For example, in 639

Fig. 18-(b), there are cuts that stand out from the rest because they are 640

not in vertical and horizontal directions (pointed out by arrows). 641
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Fig. 17: (a) Our result without MAD. (b) Our result with MAD.

Fig. 18: (a) Using Axial and Crosswise direction on C-shape. (b)
Without using Axial and Crosswise direction on C-shape. (c) Using
Axial and Crosswise direction on spoon shape from MPEF7 dataset.
(d) Without using Axial and Crosswise direction on spoon shape from
MPEF7 dataset.

Image assignment and Optimization The image assignment step642

and optimization step are critical for the final quality of our results.643

To analyze the impact of each of them in our final results, we respec-644

tively remove each of them and compare their results with those in645

the full configuration. The visualization is shown in Fig. 19. In Fig.646

19(b), we randomly assign images to leaf nodes without considering647

importance. Less important images might be placed in a more promi-648

nent location, in this case, background images are placed in the center649

(pointed out by black arrows). Our optimization has two objectives:650

saliency maximization and triangle penalty. The saliency maximization651

term simultaneously creates and matches the most suitable cells for652

the subjects. We create the result without optimization (i.e. randomly653

configure the MABST) in Fig. 19(c). There are plenty of cells in weird654

shapes (highlighted in red), which are hard to place objects. Further-655

more, the main subjects appear smaller in Fig.19(c). This means that656

we fail to find the tailored cells. Compared with the result in Fig.19(d),657

our method is able to suppress the triangular cell that would otherwise658

appear in middle (highlighted in red). Note that our method cannot al-659

ways completely remove the triangles. For shapes with a curved medial660

axis like the heart shape, triangles are sometimes required. However,661

our method is able to reduce the number and the size of the triangles or662

at least push the triangular structure to the boundary.663

5.4 Evaluations664

5.4.1 Qualitative Evaluation665

Here, we qualitatively evaluate the results by visually comparing our666

results with four baselines. The first baseline TB[8] is the most related667

work to ours. The second method is a widely-used commercial software668

Shape Collage (SHP)[4]. Since most of the works in image collage669

are on rectangular layouts, we compare with the current state-of-the-670

art SoftCollage(SC)[35]. SC only can work on rectangle layout; we671

further do experiment by applying shape masks to SC (SC+ Mask).672

Fig.21 outlines this comparison. More comparisons are presented in673

the supplementary materials.674

Comparing our results with TB’s [8], TB also addresses the ICAS675

problem. The images are first embedded in 2D canvas with hyperbolic676

projection, which maintains image correlations. Then they progres-677

(a) Result with all the component (b) w/o image assignment

(c) w/o saliency maximization (d) w/o triangle penalty

Fig. 19: Visual comparison of ablated results.

sively adjust image locations to go within the target shapes. The adjust- 678

ment process, however, is done locally and does not consider the shape 679

as a whole. Hence, their method only works well for shapes similar to 680

a circle. This can be seen in the examples that the tree shape in Fig. 21 681

works better than the others. Furthermore, their method only makes 682

sure that the center for every image is moved inside the shape. This 683

assumption works fine if images are tiny. But in the cases where the 684

images are large, the majority of the image might locate outside the 685

target region, for example in Fig. 21, the hand of the baby or the feet of 686

the couple. This leads to difficulties for us to recognize the shape. In 687

contrast, it is very easy for us to recognize the shape of our results. 688

SHP [4] is a popular image collage software that is used as the 689

baseline model in several papers [8, 21, 35]. SHP is different from 690

TB in that it allows for more image overlapping the image rotation. 691

It can improve the shape accuracy in some parts, for instance, the 692

baby’s head or the woman’s hair in the couple shape. However, SHP 693

has more empty space and image overlapping that prevent it from 694

effectively visualizing the whole story in the collection. Compared 695

with our results, SHP suffers from the drawback similar to TB i.e. 696

objects outside the boundaries. Furthermore, SHP cannot estimate 697

accurately how many images in each region e.g. the leg of the man in 698

the couple shape has no image. Meanwhile, the results shown in the 699

first column demonstrate that our method outperforms the compared 700

method in terms of controlling the number of images in each region. 701

Rectangular image collages have an advantage in preserving the 702

complete content of the images. The state-of-the-art SC has done a 703

good job in preserving the original aspect ratio of each image. However, 704

compared with shaped collages, rectangular collages lack variety e.g. 705

four examples in Fig.21-SC share similar visual structures and only 706

differ in image contents. In contrast, our result is much more interesting 707

and, as we will show in the user study, people judge that our results are 708

more aesthetic. 709

In the case of SC+Mask, the results suffer the drawbacks of boundary 710

cells, which we mentioned in the prior section. We can see several cells 711

at the boundary in which the important objects in images are almost 712

cut out or even not presented in the collage. Because SC+Mask does 713

not consider the shape structure as our method does, it generates cuts 714

that are not natural e.g. the vertical split in the middle of the tree or big 715

images that extend beyond the baby’s head. 716

In summary, our method outperforms the compared methods in its 717

ability to represent the shape while preserving the content of the image 718

collection. The image is laid out in a visually pleasing manner. All of 719
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(a) Even-sized layout (b) Uneven-sized layout (c) Collage of 15 images (d) Collage of 25 images

Fig. 20: Demonstrates our method to be flexible in layout design and distinct sizes of image collections.

Fig. 21: Comparison of the results generated with different methods. The input shape are trees, babies, couples and boats, which are represented
by the black silhouettes.
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these characteristics greatly enhance users’ viewing experiences when720

viewing our collages.721

5.4.2 Quantitative Evaluation722

Besides the qualitative comparison, we quantitatively evaluate our pro-723

posed method. We generate several image collages with the three724

baseline methods TB, SHP and SC+Mask. We do not consider SC in725

this experiment because it is not fair to compare some of the metrics726

on different layouts i.e. shaped layout and rectangular layout. The727

quality of results generated by these competitors is measured on five728

metrics that are commonly considered in the literature on image collage729

including the state-of-the-art SoftCollage [35]. Among them, nonover-730

lapping constraint Mo, correlation preservation Mn and saliency loss731

Ms are identical to [35]. Compactness Mc is similar but generalized to732

irregular shapes. We further propose a new metric: saliency area Ma.733

Five metrics are described as follows:734

• Saliency area. This metric measures the collage ability to max-735

imize the salient objects on the canvas, which is defined as the736

proportion of total shape covered by salient objects.737

Ma =
|
⋃

i Si|
PX

, (14)

. where
⋃

i Si is the collage mask obtained by replacing each738

image in the collage with the corresponding saliency mask. Si is739

the saliency mask of image i. |.| denotes the saliency area of the740

mask. PX is the number of pixels of the input shape.741

• Compactness. A compact collage uses space less wastefully by742

minimizing white space. We formulate the compactness as:743

Mc =
Pw

PX
, (15)

where Pw is the number of pixels of the white space.744

• Non-overlapping constraint. Image overlapping decreases the745

aesthetics and informativeness of the collage. Overlapping can be746

calculated as747

Mo =
Po

PX
, (16)

where Po is the sum of the intersecting pixels of any two images.748

• Correlation preservation. Placing correlated images together749

can facilitate the informativeness of the collage. The metric is750

expressed as:751

Mn =
1
N ∑

i
∥(Li−Lci)∥, (17)

where Li is the location of image i in the collage, and Lci is the752

location of the centroid location of the category ci of image i,753

which are provided in AIC dataset. For this metric, the lower is754

better. All location coordinates are normalized by the width and755

height of the input shape.756

• Saliency loss. This metric measures the ability to preserve salient757

regions in the image and is defined as758

Ms = 1− |
⋃

i Si|
∑i |Si|

. (18)

Table 1 shows the statistic on the above evaluation metrics. For759

the first metric Ma the higher is better. For all the other metrics, the760

lower is better. The first thing to notice is that our method achieves761

the higher in the first and the lowest value in three of the other metrics762

i.e. Mc, Mo, Ms, while performing similarly to the competitors in Mn.763

Larger saliency area Ma means that our method uses the shaped space764

more efficiently. Better compactness (lower Mc) reflects our main goal765

to authentically represent the input shape. Although SC+Mask also766

Table 1: Quantitative Evaluation Metrics

Method Ma Mc Mo Mn Ms

TB[8] 0.08 0.23 0.01 0.12 0
SHP[4] 0.12 0.29 0.09 0.15 0.06

SC+Mask 0.19 0 0 0.13 0.52
Ours 0.32 0 0 0.17 0

achieves zero in this metric, it lags far behind our method in Ms because 767

it is not originally designed for shaped collage. As for non-overlapping 768

constraint Mo, SHP performs the worst because SHP allows for over- 769

lapping. For correlation preservation Mn, TB and SC+Mask beat our 770

method and SHP due to their inclusion of image feature extraction 771

components. However, the difference is not huge. In summary, the 772

three baseline methods all have obvious drawbacks. For TB and SHP, 773

the weaknesses are compactness Mc. For SC+Mask, the weak point is 774

saliency loss Ms. This reveals that our method is the best among these 775

four methods. 776

5.5 User study 777

We conduct two user studies to evaluate the effectiveness of our results. 778

One is to measure users’ preference for different methods, and the other 779

is to measure how effective is our method in presenting the information. 780

16 image collections with the number of images ranging from 15 to 40 781

are used along with 16 different shapes. For each image collection and 782

shape, we generate results with our methods and four baseline methods 783

i.e. TB, SHP, SC and SC+Mask. We recruited a total of 39 users to 784

conduct our user study. They are of different ages (age range of 21-31) 785

and backgrounds (13 of them have graphics-related backgrounds). In 786

the first user study, the users are asked to choose between two results 787

generated with two of the five methods. The result of the side-by- 788

side evaluation is shown in Table 2. In the side-by-side evaluation, our 789

method beats all the comparative methods by 84%, 83%, 60%, and 43% 790

respectively. The statistics results reveal that our results receive major 791

votes from the users. It demonstrates that our method can catch the 792

general public users’ interest. The evaluation results are presented in 793

Fig.5 of the supplementary file. When analyzing the evaluation results, 794

we found that the examples R5 and R11 receive relatively fewer votes 795

than other samples. It is because the layout generated by these shapes 796

consists of some narrow regions. Thus, they could not be favored by 797

the users. In the second user study, users are given a collage result and 798

four pictures of salient objects that appear in that collage. We measure 799

the total time for the user to locate all four objects in the collage. Our 800

result has the second lowest retrieval time among the five methods as 801

shown in Table 3. The SC+Mask achieves the lowest time because it 802

has far fewer objects to check compared to the others. We can conclude 803

that our method can effectively present the data, which allows users to 804

easily consume the information. 805

Table 2: Side-by-side User Evaluation.

Wins Equally Good Losses ∆

Ours v.s. TB[8] 91% 2% 7% 84%
Ours v.s. SHP[4] 90% 3% 7% 83%
Ours v.s. SC[35] 77% 6% 17% 60%

Ours v.s. SC+Mask 69% 5% 26% 43%
∆ denotes the difference of the win rate and the loss rate. Higher is

better.

Table 3: Information Conveying Test.

Ours TB[8] SHP[4] SC[35] SC+Mask
Time (s) 18.15 20.03 22.25 18.47 13.40
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5.6 Limitation806

We have presented a system that collages various image collections in807

diverse shapes. However, for shapes that have very long and narrow808

regions (illustrated in Fig. 22-(a), our method can work but the visual809

quality of the result is less than ideal. In particular, the image content810

in the legs of the beetle is not identifiable. This stems from our problem811

formulation. A different formulation might be better to deal with this812

case e.g. collage on the complement of the beetle shape. Another813

limitation occurs when the image collection encompasses landscape814

photos, our method may not perform well (as shown in Fig.22-(b)).815

Currently, our approach adopts an off-the-shelf salient object detection816

method, which is introduced in [22], to detect the subjects in images.817

In the landscape photos, the difference in salient values in patches is818

small. Therefore, our optimization scheme may fail to estimate the819

tailored cell and target box to collage such photos.820

Fig. 22: Two examples of limitations of our system. In (a), the beetle
shape consists of multiple narrow regions. This leads to small images
(highlighted in red). In (b), the number of landscape photos dominates
in the given collection. We may not analyze the subjects of such photos
precisely. And thus, the optimization step may fail to estimate the
correct cell and the box in the cell to put such landscape photos. That
is the reason, the scene of several images is cropped (highlighted in
yellow). This eventually damages the semantic and visually pleasing
factors of the final collage.

6 CONCLUSION821

In this paper, we introduce a unified ICAS algorithm centered around822

medial axis. The algorithm includes a novel Shape-aware Slicing823

algorithm and an optimal collage search strategy. We demonstrate824

that the proposed slicing method is especially useful for balancing the825

layout of image collage on irregular shapes. This gives our system the826

capability of collaging image collection with flexible and diverse shapes.827

Moreover, the proposed layout optimization serves better collages828

by analyzing the correlation between the content in the collection829

and the layout structure. Our results and evaluation show that the830

proposed collage scheme substantially outperforms prior works and831

overcomes the drawbacks in existing commercial applications. In the832

future, we plan to investigate such techniques to assess the semantics in833

the landscape photos to improve the accuracy of the optimization and834

thus enhance the visual quality of generated results. Furthermore, we835

may consider different visualization techniques for shapes with long836

narrow regions.837
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