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Fig. 1. Face-swapped images generated by our method, E4S [Liu et al. 2023], StyleFusion [Kafri et al. 2022], and InfoSwap [Gao et al. 2021]. From top-

to-down and left-to-right, female-to-female, female-to-male, male-to-male, and male-to-female swapping conditions are shown. We are superior to these

high-fidelity face-swapping models in terms of identity preserving.

In this study, we revisit the fundamental setting of face-swapping mod-
els and reveal that only using implicit supervision for training leads to
the difficulty of advanced methods to preserve the source identity. We
propose a novel reverse pseudo-input generation approach to offer sup-
plemental data for training face-swapping models, which addresses the
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aforementioned issue. Unlike the traditional pseudo-label-based training
strategy, we assume that arbitrary real facial images could serve as the
ground-truth outputs for the face-swapping network and try to generate
corresponding input <source, target> pair data. Specifically, we involve a
source-creating surrogate that alters the attributes of the real image while
keeping the identity, and a target-creating surrogate intends to synthe-
size attribute-preserved target images with different identities. Our frame-
work, which utilizes proxy-paired data as explicit supervision to direct
the face-swapping training process, partially fulfills a credible and effec-
tive optimization direction to boost the identity-preserving capability. We
design explicit and implicit adaption strategies to better approximate the
explicit supervision for face swapping. Quantitative and qualitative exper-
iments on FF++, FFHQ, and wild images show that our framework could
improve the performance of various face-swapping pipelines in terms of vi-
sual fidelity and ID preserving. Furthermore, we display applications with
our method on re-aging, swappable attribute customization, cross-domain,
and video face swapping. Code is available under https://github.com/
ICTMCG/CSCS.
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1 Introduction

Face swapping [Bitouk et al. 2008], also referred to as face replace-
ment, enables the automatic exchange of faces among different por-
traits. By changing the distinct shape and texture [Liu et al. 2023] of
unique facial components (e.g., eyes, mouth, and face shape) while
preserving non-identity attributes (e.g., pose, expression, illumi-
nation, and background), image and video face swapping meth-
ods [Chen et al. 2020; Mirsky and Lee 2021] have been widely used
in the fields of movie and television creation, privacy protection,
and virtual human creation.

Among fundamental requirements for face-swapping models,
identity preservation is one of the most pivotal, where the swapped
face should be faithful to the source person. Typical swapping
methods [Chen et al. 2020; Gao et al. 2021; Kim et al. 2022; Li et al.
2020] utilize latent representations from pretrained face recogni-
tion models (e.g., ArcFace [Deng et al. 2019]) as identity prior to
guiding the swapping model. Xu et al. [2022b, a], Kafri et al. [2022],
and Zhu et al. [2021] leverage the latent space of pretrained Style-
GAN models to further support the control of identity and non-
identity attributes during face swapping. Despite the impressive
progress in face swapping, we argue that merely using latent em-
bedding as implicit supervision will lead to “in-between” results.
In these results, the swapped face appears as an interpolated iden-
tity between the source and the target. When the source and target
images are not similar (i.e., of different genders), swapped results
become difficult to recognize as the original individuals, as shown
in Figure 1.

This challenge can be dated back to the state of the ill-defined
formulation for face-swapping tasks. Different from common data-
driven methods where pre-collected <input, ground truth> could
be used directly as explicit supervision for end-to-end training, find-
ing a “real” swapped image for a given <source, target> is difficult.
Considering the absence of explicit supervision, conventional face-
swapping methods follow the implicit supervision in the form of
an ID loss with a source image and a reconstruction loss with tar-
get image (Figure 2 (left)). However, the ID loss is calculated by
a pretrained face classification model, which is not designed for
face-swapping tasks [Liu et al. 2023]; the pixelwise reconstruction
loss may force the model to retain identity attributes of the target
image [Kim et al. 2022]. Empirical studies in Section 3 show that
implicit supervision is biased toward face-swapping tasks and may
lead to inappropriate convergence of the swapping network.

In this research, we focus on boosting face-swapping models by
adding explicit supervision for network training. Conceptually, we
assume a given image as a ground-truth output for training face-
swapping models. A novel Credible Supervision Completion

via Surrogates (CSCS) framework is proposed to generate pseudo
inputs reversely, as shown in Figure 2 (right): A source-creating
surrogate model alters the attributes of the real image while
keeping the original identity; a target-creating surrogate model
changes the identity while maintaining non-identity attributes
such as pose and expressions. An explicit adaptation is applied
on the pseudo inputs to inject specific control (e.g., face shape)
into the swapping process. Then, the proxy-paired data <pseudo
source/target, ground truth> are directly fed to the network by
pixelwise explicit supervision. Furthermore, considering the inher-

Fig. 2. Overviews of the Credible Supervision Completion via Surrogates

framework. Left: The current face-swapping framework, where no ground-

truth paired data are used for training and substituted by weakly ID

loss and reconstruction loss. Right: The proposed framework, where dual-

creating surrogates are applied to synthesize proxy-paired data to train

the face swapping.

ent difference between face recognition and face-swapping tasks,
implicit adaptation is employed to revise the identity representa-
tion by adding an ID encoder adapter trained on proxy-paired data.
Extensive experiments with different backbones show that our
method is effective in identity preservation while obtaining high-
generation quality. Our contributions can be concluded as follows:

— We propose a novel face-swapping training framework to
alleviate the absence of explicit supervision by introducing
CSCS framework, where proxy-paired data are constructed
by dual-creating surrogates and explicit supervision is
provided.

— We propose explicit adaption on proxy-paired data to
further approximate ideal paired data, which enables
face-shape transferring and other specific demands during
face swapping for diverse real-world applications.

— We propose implicit adaptation, where a novel ID encoder
adapter is employed to revise the identity representation ac-
cording to proxy-paired data, and experiments demonstrate
the improvement in identity preservation.

— Experiments show that the proposed CSCS framework
can generate high ID-preserved and shape-aware swapped
face images. Various applications, including re-aging,
customized swapping, cross-domain swapping, and video
swapping are further proposed.

2 Related Works

2.1 Digital Face Generation

Digital face generation refers to the use of computer technology
and algorithms to create virtual facial images. In the fields of
computer graphics, artificial intelligence, and computer vision, re-
searchers employ various techniques and methods, such as deep
learning and generative adversarial networks (GANs) [Good-
fellow et al. 2020], to produce realistic digital faces. These gener-
ated facial images find applications in various areas such as movie
special effects, video games, virtual reality, and human-computer
interface design. The research directions encompass modeling,
editing, and animation.

2.1.1 Face Modeling. The foundation of digital face generation
is the face modeling. Three-dimensional Morphable Model
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(3DMM) [Blanz and Vetter 1999], which is a statistical parameter
face model, is widely applied across diverse applications. With the
progress of artificial intelligence, deep learning-based face mod-
eling [Ling et al. 2022; Zhang et al. 2024] and reconstruction [Li
et al. 2022] methods have emerged, which yield outputs of notable
quality. Furthermore, several methods have been introduced to sys-
tematically model distinct facial components for comprehensively
capturing diverse facial details. These facial components include
eye [Francois et al. 2009], hair [Saito et al. 2018; Zheng et al. 2023],
neck [Liu et al. 2021c], and face wrinkle [Deng et al. 2021]. Global
and local face modeling plays a crucial role in achieving accurate
facial generation.

2.1.2 Face Editing. Face editing is a prevalent application of dig-
ital face generation. Wang et al. [2022] guide face manipulation
with 3D guidance, and Zhou et al. [2024] apply controllable face
generation in neural radiance field [Mildenhall 2020]. In addition,
certain works focus on editing specific facial components, such as
hair editing [Song et al. 2024]. Face stylization [Han et al. 2021]
translates the face into another style. It includes cartoons [Xiao
et al. 2024] and caricature [Ye et al. 2023] and constitutes another
pivotal research aspect item in face editing.

2.1.3 Face Animation. Animating facial poses and expressions
is highly significant and extensively applicable. The research on
transferring motion to the face has been a subject of extensive
exploration since its early stages [Deng et al. 2006; Pei and Zha
2007]. As generative modeling advances, speech-driven face ani-
mation [Liu et al. 2021a; Wen et al. 2020; Yi et al. 2022] has become
capable of producing realistic talking faces.

2.2 Face Swapping

Face swapping, as an application of digital face generation, aims to
transfer identity from the source and non-identity attributes from
the target to obtain the swapped face. Various approaches can be
used to model identity information for face swapping, which will
be discussed in the following sections.

2.2.1 3DMM-based Methods. In the classic methods,
3DMM [Blanz and Vetter 1999] is utilized to conduct face
swapping. 3DMM disentangles the face 3D structure into shape
and texture, which contains ID information. 3DMM-based
methods transform the ID-related 3D structure to achieve face
swapping. Classic 3DMM-based methods [Blanz et al. 2004;
Nirkin et al. 2017] fit the source face into 3DMM to represent
identity. Then these methods transfer the pose, expression, and
illumination according to the target image. Color transfer and seg-
mentation are always applied to overcome skin or face differences.
Face2Face [Thies et al. 2016] fits 3DMM first and then switches
the ID-related information from the source to the target. Limited
by 3DMM’s capability, 3D-based methods suffer from unnatural
results, and blending constraints the change in face shape.

2.2.2 Reenact-based Methods. This method utilizes a reenact
model to transfer the source identity, which is then blended
on the target background to swap faces. DeepFakes1 and Deep-
facelab [Perov et al. 2023] blend person-specific reenacted faces

1https://github.com/deepfakes/faceswap

with mask and color correction, which results in failure in facial
shape and texture preservation. Naruniec et al. [2020] achieve
high-resolution swapping results within this framework, and
Otto et al. [2022] extend it with the differentiable 3D network.
FSGAN [Nirkin et al. 2019] reenacts via facial landmarks, inpaints,
and blends with face segmentation. E4S [Liu et al. 2023] utilizes
a reenact model to align the pose and expression. These methods
could generate identity-preserving reenacted faces but fail to pre-
serve after blending due to the difficulties in merging non-identity
attributes.

2.2.3 Identity Encoder-based Methods. Identity encoder-based
face-swapping approaches apply one encoder to extract identi-
ties, such as the pretrained face recognition model ArcFace [Deng
et al. 2019], and another encoder to extract non-identity attributes.
FaceShifter [Li et al. 2020] designs a two-stage network to inte-
grate input attributes and revise output, while SimSwap [Chen
et al. 2020] proposes a one-stage network to obtain high-fidelity
swapped faces. In HifiFace [Wang et al. 2021a], a 3D face struc-
ture is additionally utilized to represent the identity information,
and an auto-blending strategy is proposed. InfoSwap [Gao et al.
2021] disentangles identity attributes by information bottleneck.
SmoothSwap [Kim et al. 2022] noticed the conflict between ID
loss and reconstruction loss and applied supervised contrastive
loss [Khosla et al. 2020] to smoothen ID feature space.

2.2.4 Latent-based Methods. In recent years, pretrained gener-
ative models, such as StyleGAN, have demonstrated remarkable
disentanglement capabilities in latent space. MegaFS [Zhu et al.
2021] generates mega-pixel swapped faces by switching semantic
appearance via StyleGAN2, while FSLSD [Xu et al. 2022a] transfers
structural information. StyleFusion [Kafri et al. 2022] disentangles
the composition of a face by fusing latent codes. RAFSwap [Xu
et al. 2022b] uses face masks to guide the information interac-
tion in StyleGAN2 latent space. E4S [Liu et al. 2023] treats face
swapping as editing and demonstrates a novel regional inversion
to transfer face shape and facial textures after reenacting. Latent
space-based approaches are limited by the capability of the pre-
trained model and the inversion method to represent identities.
These methods require a complex disentanglement mechanism
to achieve attribute transfer, which still cannot get satisfactory
results.

As progressive improvements have been made, face-swapping
methods now use unintuitive implicit supervision guiding signals
such as ID loss, reconstruction loss, 3D attributes, and face-mask
information. However, they all suffer from no explicit supervision
because of the inherent absence of ground-truth-swapped images.

3 Background and Analysis

3.1 Notations

Given a source facexsrc and a target facextдt , face swapping trans-
fers the identity from xsrc and the non-identity attributes from
xtдt to generate the swapped face yout . The current swapping
framework, as visualized in Figure 2, utilizes two basic losses to
guide swapping.

— ID loss is commonly used to guide identity swapping, which
is calculated in pair (xsrc ,yout ) as Lid = 1−cos (zsrc , zout ),
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where zsrc and zout are the ID features extracted by the ID
encoder.

— Reconstruction loss is essential for the model to learn how to
keep xtдt ’s attributes. L2 loss is utilized between xtдt and

yout by Lr ec = | |yout − xtдt | |
2
2 , when xsrc = xtдt .

The total loss Ltotal for face-swapping training is

L = λidLid + λr ecLr ec , (1)

where λid and λr ec are the weights for Lid and Lr ec .
We formulate the identity preservation problem for the face-

swapping task. In face swapping, the swapped face yout is gen-
erated by the model M ,

yout = M(xsrc ,xtдt ). (2)

When considering the visual attributes of each image,

{Attr |yout } = {{Attrid |xsrc }, {Attrnid |xtдt }}, (3)

where Attr |yout = {a1,a2, ·,an } is the visual facial fea-
tures/attributes comprising the face image, andAttrid andAttrnid

are identity and non-identity attributes, respectively. Equation (3)
represents the transfer identity and non-identity attributes from
xsrc and xtдt . We posit that the setting of Attrid , as an abstract
concept, can vary across different scenarios. In the majority of in-
stances, we assume that the visual features that would not be easily
changed for individuals should be counted as Attrid . Thus, the de-
fault setting of identity preservation is as follows:

— Default config:AttrD
id

= { distinct shape and texture of unique
facial components (e.g., eyes, mouth, nose, and face shape )}
andAttrD

nid
= {pose, expression, illumination, hairstyle, face

skin, occlusion, background }.

In the default setting, hairstyle and face skin belong to AttrD
nid

.
Additional configurations of Attrid are discussed in Section 6.2.

3.2 Analysis on Explicit Supervision Absence

In the following passages, we delve into the reasons associated
with the failure of identity preservation in face swapping. We ex-
plore the insufficient capability of the unintuitive identity loss and
analyze the impact of implicit supervision caused by the absence
of explicit supervision, that is, no ground-truth pair, which leads
to identity failure.

We first conduct a brief experiment to investigate the capability
of identity loss. We vary the weight of ID loss and reconstruction
loss to train base face-swapping models, and the results are pre-
sented in Figure 3. Our observations reveal that the output face is
continuously varied from the target to the source, but the most ID-
similarity swapped output is still difficult to recognize as xsrc . We
conclude that ID loss does not accurately reflect the faces for the
entire control by ID loss.

Furthermore, we deform face shape on 1,000 images and com-
pute the identity similarity using different face recognition mod-
els [Deng et al. 2019; Schroff et al. 2015; Wang et al. 2018] and a
modified identity encoder SmoothID [Kim et al. 2022]. The results
are shown in Figure 4. All models exhibit similar results: The simi-
larity far exceeds the threshold. This similarity results explicitly in
the tolerance of identity loss toward the face-shape deformation
and the gap between face recognition and face swapping, which

Fig. 3. Results of varying the weights of ID loss and reconstruction loss.

The increase of ID loss to an extreme point (λid =10,000) makes the outputs

become stable. Meanwhile, drastic enhancement of reconstruction loss

leads output images to tend to be target images. However, the balanced

point to generate the most ID-similarity outputs (λid =100 in this picture)

still results in source-unlikely, “in-between” [Liu et al. 2023] swapped im-

ages. In some cases, it brings errors such as the second row with an inexpli-

cable glasses appearance and the third row with terrible color mutation.

Fig. 4. Identity similarity on varying augmentation strength of shape-

deformed faces and the corresponding face recognition thresholds. LT is

linear transform, CB is face chubby, and ALL means both are applied. Dif-

ferent identity encoders exhibit similar phenomena: Similarity far exceeds

the threshold even with a huge augmentation strength, indicating a mis-

match between identity encoder and face swapping.

certainly limits the capability of the face-swapping model to trans-
fer face shape.

Based on the above-mentioned observation, we proposed an im-
plicit supervision face-swapping training framework due to the ab-
sence of explicit supervision, which could result in identity preser-
vation failure. We construct a counterfactual sample with different
identities by modifying the face shape. As shown in Figure 5(a),
we select two real images of one identity and change the shape of
one to an image with a perturbed identity in human perception.
The identity losses by ArcFace are displayed in this image. Clearly,
L1

id
< L2

id
, which means that, when the face-swapping training

ACM Trans. Graph., Vol. 43, No. 5, Article 161. Publication date: August 2024.
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Fig. 5. Analysis of identity loss. (a) Large changes in identification (e.g.,

face shape) by human perception could result in smaller identity loss from

the pretrained face recognition model. (b) The phenomenon presented in

(a) causes a wrong convergence path during face-swapping training be-

cause of the absence of explicit supervision.

comes to this step, models guided by identity loss are more tended
to converge by L2

id
, which results in identity change.

Furthermore, when revisiting the common face-swapping train-
ing framework, reconstruction on the target image prompts the
model to incorporate target identity attributes into the swapped
face [Kim et al. 2022]. As a result, Lid tries to converge under
the situation of identity change, while the loss could still decrease
due to the above-mentioned analysis (Figure 5(b)). Considering the
combined effect of the two components of implicit supervision,
the optimization is directly toward altering the identity. This con-
clusion inspires us to approach the identity preservation problem
from the perspective of completing explicit supervision.

4 Credible Supervision Completion via Surrogates

We propose the CSCS framework to credibly complete the absence
of explicit supervision in current face swapping. To approximate
the explicit supervision, our goal is to directly obtain real face-
swapping images and construct the paired data (xsrc , xtдt , yдt )
to guide face-swapping training, as depicted in Figure 6(a). In the
process of constructing paired data, the central challenge revolves
around synthesizing these data and seamlessly incorporating them
into the face-swapping task. We introduce dual-creating surro-
gates to generate credible proxy-paired data that can provide guid-
ance for face-swapping training, which tackles the aforementioned
issues. We also propose explicit and implicit adaptation strategies
to revise the paired data and identity encoder. In this context, the
surrogate [Papernot et al. 2017] refers to the pretrained models
from other methods to serve our goal, and the proxy dataset is the
dataset used as a replacement for the ground-truth dataset.

4.1 Dual-Creating Surrogates

The presence of a ground-truth swapped image, which is denoted
as yдt and illustrated in Figure 6(a), is indispensable to facilitate
explicit supervision in face-swapping training. However, the
acquisition of yдt in real-life scenarios presents formidable
challenges, which is mainly due to the dual dependencies of face
swapping. Specifically, yдt must mirror the exact identity of xsrc

while simultaneously sharing identical attributes with xtдt . A
pragmatic approach involves synthesizing yдt by sequentially
transferring attributes from two images. Established tools that

ALGORITHM 1: Proxy-Paired Data Generation Pipeline

Input: Real Face Dataset D , Dual Surrogate Generative Models
SMsr c & SMtдt , Shape Adaptation SA, Shape Adaptation
Threshold th, Customized Adaptation CA, Dataset Size N

Result: Proxy pairsM
1 M ← {};

2 for n = 1, . . . , N do

3 Sampling a real face y
p
дt ∼ D ;

4 x
p
sr c ← SMsr c (y

p
дt );

5 x
p
tдt ← SMtдt (y

p
дt );

6 p ∼ U (0, 1);

7 if p > th then

8 x
p
tдt ← SA(x

p
tдt );

9 end

10 x
p
sr c , x

p
tдt , y

p
дt ← CA((x

p
sr c , x

p
tдt , y

p
дt ));

11 M ← M ∪ {(x
p
sr c , x

p
tдt , y

p
дt )};

12 end

transfer certain attributes, encompassing aspects, such as pose
and expression [Wang et al. 2021c, d], hair style [Song et al. 2024],
and background, can be utilized. However, this synthetic process
is intricate and may entail error accumulation, particularly con-
cerning identity preservation. Nevertheless, upon reconsidering
the synthesis flow from a reverse perspective, we have discovered
the feasibility of approximate ground-truth pairs without relying
on long-term dependence.

We introduce Dual-Creating Surrogates to synthesize proxy-

paired data x
p
src and x

p
tдt from a real face image y

p
дt . The genera-

tion pipeline for proxy-paired data is illustrated in Algorithm 1.
In our condition, dual-creating surrogates are a couple of func-
tionally symmetrical pretrained models: Source-creating surrogate

implements the function of changing the attributes of y
p
дt while

keeping identity and output the x
p
src , such as reenact models like

FaceVid2Vid [Wang et al. 2021c], LIA [Wang et al. 2021d], or rota-

tion augmentation, can be applied to generate x
p
src with different

pose and expression; x
p
tдt is synthesized by target-creating surro-

gate, by altering identity and preserving attributes, i.e., pretrained
face-swapping models such as SimSwap [Chen et al. 2020] and In-
foSwap [Gao et al. 2021], though insufficient at ID preserving, are
qualified to modify the identity of the real image. After genera-

tion with dual-creating surrogates, proxy-paired data (x
p
src ,x

p
tдt ,

y
p
дt ) are utilized as the training data for swapping, where the face-

swapping model learns to transfer the identity of x
p
src to x

p
tдt to

predict the ground-truth swapped face image y
p
дt .

The generation pipeline is visualized in Figure 6(c). Our pipeline
has two advantages: (1) our proxy-paired data provide credible

supervision, a real face y
p
дt as ground-truth output, and a proxy

source x
p
src with the same identity to guide swapping for com-

pleting the absence of explicit supervision. (2) One-stage synthetic
chain prevents the ID shift caused by sequential multiple steps,
which also benefits identity-preserving swapping. The absence of
any of these surrogates can potentially result in the failure to
achieve explicit supervision, and a detailed analysis of this scenario
will be presented in the following experimental Section 5.

ACM Trans. Graph., Vol. 43, No. 5, Article 161. Publication date: August 2024.
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Fig. 6. Comparison between different swapping training frameworks. (a) Face-swapping training with ground-truth swapped image yдt ; (b) current swap-

ping training with ID loss and reconstruction loss; and (c) our CSCS synthesis proxy paired data by dual-creating surrogates from one real image, and

adaptation is operated to get the required training data. Credible supervision is applied by Lr ec between yout and yдt where a real image is utilized to

guide swapping. The reserve design of dual surrogates prevents error accumulation from the multi-step synthesis process.

4.2 Explicit Adaptation on Proxy-paired Data

Directly applying proxy-paired data is insufficient for identity
preservation, especially on face-shape transferring. This limitation
stems from the shape-unawareness of the target-creating surro-
gate. To overcome this shortcoming, we propose an explicit adap-
tation on paired data strategy, where application-oriented modi-
fication is applied to revise the proxy-paired data, which helps
face-shape transferring. Moreover, we have discovered that ex-
plicit adaptation enables corresponding adaptation to be applied to
proxy-paired data, which results in adaptable guidance. This strat-
egy yields customized face-swapping models to meet real-world
diverse swapping needs.

4.2.1 Shape Adaptation. In face-shape transferring [Kim et al.
2022; Wang et al. 2021a], face-swapping models should reconstruct

the face shape of x
p
src on swapped images rather than keep x

p
tдt .

Face shape is an essential part of ID representation [Liu et al. 2023],
and a model has difficulty to accurately transfer the face shape
because of the reconstruction loss [Kim et al. 2022]. Researchers
have explored various methods to guide face-shape transferring,
including leveraging 3D information [Wang et al. 2021a], disentan-
gled ID features [Gao et al. 2021], or smoothed identity representa-
tions [Kim et al. 2022]. However, face-shape transferring remains
constrained by implicit guidance. In our framework, we simplify
the face-shape transferring problem through explicit adaptation
on paired data.

To guide the face-shape transferring, the ground-truth swapped

facey
p
дt should have the same face shape as x

p
src while being differ-

ent with x
p
tдt . To attain this requirement, we alter the face shape in

x
p
tдt , which enlarges the difference between x

p
tдt and y

p
дt in terms

of facial structure. We utilize three types of augmentations, namely,

Fig. 7. Face-shape adaptation and proxy-paired data visualization. (a) Face

warping on x
p
tдt ; (b) shape transferring on proxy paired data during

training.

face-thin, chubby, and linear transform. The detailed visualization
of different face-shape adaption and the final adapted paired data
are shown in Figure 7. This way allows the model to learn how to
swap face-shape effectively.

4.2.2 Customized Adaptation. Customizing your face-
swapping model to transfer or preserve certain attributes can

ACM Trans. Graph., Vol. 43, No. 5, Article 161. Publication date: August 2024.



Identity-Preserving Face Swapping via Dual Surrogate Generative Models • 161:7

significantly enhance the user experience. Customized face
swapping is a problem that has been relatively underexplored in
the past, which can be marginally achieved by E4S [Liu et al. 2023]
through editing. Our framework possesses flexible adaptability,
which enables it to accomplish various real-world applications.
Customized requirements can be satisfied using carefully de-
signed adaptation strategies on each component of proxy-paired
data. For illustration, we provide two examples involving beard
removal and glasses transfer, which may be practical in some
special scenarios. Image editing method [Karras et al. 2020b; Shen
et al. 2020] is utilized to construct adapted proxy-paired data. For
beard removal, the objective is to instruct the swapping model to
eliminate facial bread from xsrc . For glasses transfer, we aim to
selectively add glasses to facilitate the transfer process. Section 6.2.
shows a more comprehensive understanding of these adaptation
settings and visualizations.

4.3 Implicit Adaptation on ID Encoder

Considering the limitation of the identity encoder (i.e., ArcFace)
discussed in Section 3, we propose a novel strategy to provide com-
plementary identity information. Given that proxy-paired data of-
fer more suitable guidance for face swapping than traditional face-
recognition tasks, these data should be leveraged to enhance the
performance of the identity encoder. However, a direct fine-tuning
of the ID encoder on imperfect proxy-paired data could result in
worse identity representation. As a result, our primary objective
is to enhance the current identity representation while preserving
the original capabilities of the identity encoder. To accomplish this
objective, we train an adapter of the identity encoder on proxy-
paired data during face-swapping training.

An adapter is a plug-and-play network architecture to modify
the existing network. We initialize an adapter Aid with the same
network architecture and weight from the identity encoder Eid . To
retrain the inherent capabilities of the identity encoder, the weight
of the identity encoder Eid is frozen, and the adapter Aid learns a
residual to the identity embedding z during face-swapping train-
ing. For a face image x , adapter Aid extracts the residual identity
embedding zr ec , and then adds it to the origin one z,

ẑ = z + zr es , (4)

where ẑ is the final identity embedding. Before adding, we apply
the zero-convolution layer [Zhang and Agrawala 2023],

zr es = zero_conv(Aid (xsrc )), (5)

which aims to totally preserve original identity embedding at
the beginning of the training, and the identity residual would be
learned during face-swapping training. The adapter is visualized
in Figure 8, and the final equation is as follows:

ˆzsrc = Eid (xsrc ) + zero_conv(Aid (xsrc )). (6)

4.4 Joint Training with Proxy-paired Data

We set the proxy-paired data as ancillary training data in normal
steps. For each batch, half of the data are proxy-paired data, a
quarter is normal swap data, and a quarter is for reconstruction.
Besides the three two losses in Section 3, the others are defined in
the following.

Fig. 8. Identity adapter architecture. A zero-convolution layer is applied

to keep the identity encoder’s ability at the beginning of training.

To guide the swapping by proxy-paired data, L2 loss is applied

between y
p
дt and y

p
out for conducting supervision completion,

L
p
r ec =

����yp
out − y

p
дt

����2
2. (7)

ID loss L
p

id
is still calculated on pair (x

p
src , y

p
out ),

L
p

id
= 1 − cos

(
z

p
src , z

p
out

)
, (8)

where z
p
src and z

p
out are the ID feature extracted by encoder. Ad-

versarial loss is employed on yout and y
p
out ,

Ladv = −(log (D(yout ), (9)

L
p

adv
= −

(
log

(
D
(
y

p
out

))
. (10)

The total loss, which consists of the basics in Section 3, is

L = λidLid + λrLr ec + λ
p

id
L

p

id
+ λ

p
r L

p
r ec + Ladv + L

p

adv
, (11)

where λid = 1, λr = 10, λ
p

id
= 1, and λ

p
r = 20. A high weight for

λ
p
r boosts the effectiveness of proxy paired data.

4.5 Analysis of Identity Preservation

Based on the configurable Attrid discussed in Section 3.1, despite
the challenges associated with direct encoding of {Attrid , Attrnid }
through face-swapping model, CSCS constructs proxy-paired data

(x
p
src , x

p
tдt , y

p
out ) with

{
Attr |y

p
out

}
= {Attrid ,Attrnid },{

Attr |x
p
src

}
= {Attrid , ˆAttrnid },

{
Attr |x

p
tдt

}
= { ˆAttrid ,Attrnid },

(12)

where ˆAttrid and ˆAttrnid are attributes that do not need to be
transferred by the face-swapping modelM . The constructed proxy-

paired data (x
p
src , x

p
tдt , y

p
out ) fit specific {Attrid , Attrnid } through

chosen surrogates and explicit adaptation, which tells the model
which elements should be transferred with configurable Attrid .

5 Experiments

5.1 Setup

5.1.1 Implementation Details. We train our model on
FFHQ [Karras et al. 2019] and CelebaHQ [Karras et al. 2018]
dataset. A total of 90% of these datasets are used as training data,
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and the remaining 10% are set as test data. The proxy-paired data
are synthesized from FFHQ and CelebaHQ, which results in a total
of 90K pairs. Our main setting uses InfoSwap [Gao et al. 2021]
as the Target-Creating Surrogate and FaceVid2Vid [Wang et al.

2021c] as the Source-Creating Surrogate. When generating x
p
src

by the Source-Creating Surrogate, the angle between xдt and the
referenced face image is limited to under 30◦ by using a face angle
estimator for selection. Some face-warping methods are utilized

to vary the face shape in x
p
tдt . In detail, the pychubby library2

makes the face chubby or randomly changes the face scale in the
x and y axes. We also apply a face-thin algorithm. During training,

employing the shape warped x
p
tдt has 50% probability.

We train our model on 256 × 256 resolution. The FFHQ prepro-
cess method is utilized to align and crop given that it holds more
background. The batch size is set as 32, 16 of which are for proxy
paired data, 8 for reconstruction, and 8 for normal swap training.
Our model is trained on one NVIDIA Tesla A100 GPU. The train-
ing steps are set as 200K to be the same with Li et al. [2020]. The
learning rate is fixed at 4×10−4 for the generator and discriminator
with the ADAM optimizer [Kingma and Ba 2014].

5.1.2 Network Architecture. We exploit the classic face-
swapping model as our network architecture. Arcface [Deng et al.
2019] is utilized as our source encoder and in ID loss calculation.
We apply our framework on three face-swapping backbones,
namely, AEI-Net borrowed from FaceShifter [Li et al. 2020] (main
setting), SimSwap [Chen et al. 2020], and HifiFace [Wang et al.
2021a] without 3D face extractor. For adversarial training, we
use the StyleGAN2’s [Karras et al. 2020b] discriminator, and
we follow Karras et al. [2020b]; Kim et al. [2022] in using R1
regularizer [Mescheder et al. 2018]. Our framework is used as a
plug-and-play component in classic face-swapping training and is
easy to use and easy to control.

5.1.3 Comparison Methods. We compare several face-
swapping models that share official implementation and weights
or uploaded swapped FF++ [Rössler et al. 2019] videos. Specif-
ically, SimSwap [Chen et al. 2020], InfoSwap [Gao et al. 2021],
MegaFS [Zhu et al. 2021], StyleFusion [Kafri et al. 2022], FSLSD [Xu
et al. 2022a], RAFSwap [Xu et al. 2022b], and E4S [Liu et al.
2023] share code and checkpoints, and the results of DeepFakes,
FaceShifter [Li et al. 2020], and HifiFace [Wang et al. 2021a]
come from the open official FF++ swapped videos. Uploaded
checkpoints or our implementations are utilized for comparing
with wild images and FFHQ test split.

5.2 Experiments on FF++

5.2.1 Quantitative Results. Quantitative experiments are
organized following previous works [Gao et al. 2021; Kim et al.
2022; Li et al. 2020]. FF++ [Rössler et al. 2019] is a video dataset
containing 1,000 real and corresponding face-swapping videos.
We evenly sampled 10 frames from each video and obtained a
total of 10K frames. The swapping pairs comply with the official
setting, and finally, we build 10K image pairs for swapping. For
each source video, the first selected frame is set as the xsrc . For the

2https://github.com/jankrepl/pychubby

ID-preserving performance, we use CosFace [Wang et al. 2018]
and FaceNet [Schroff et al. 2015] to compute the ID Retrieval rate
and ID cosine similarity between xsrc and yout . As discussed in
the Section 3.2, metrics based on these two ID encoders do not
entirely align to ID-preserving performance. Nevertheless, there
are currently no better methods for quantitative evaluation. Pose
error and expression error are calculated to measure the attribute
consistency between xtдt and yout . Following InfoSwap [Gao
et al. 2021], 3DFFA-v2 [Guo et al. 2020] is employed to predict the
parameters of face structure, and L2 distance is computed as pose
error and expression error.

As presented in Table 1, our method results in the highest
ID cosine similarity and comparable ID retrieval rate, especially
when conducting experiments on different backbones. The results
show the ability of our method to preserve identity. InfoSwap ob-
tains the second highest ID similarity, given that it disentangles
source-related ID features and target-related ID features and ob-
tains a high ID-preserving performance. SimSwap, HifiFace, and
FaceShifter are comparable to one another, while ours and InfoS-
wap are obviously better. When combined with ours, their numer-
ical results at identity are improved obviously. MegaFS performs
comparable results to other SOTAs, while the results of FSLSD
and RAFSwap are inferior to those of others. This performance
may be caused by the domain gap brought by the GAN-inversion
method.3 The results obtained with E4S suffer from poor illumi-
nation, which is primarily attributable to the reenactment-based
framework.

For pose and expression (“Exp.” in Table 1), our method is compa-
rable to other methods. The reason is that ours changes face shape
largely and affects the results. Another shape-aware method Hifi-
Face [Wang et al. 2021a], which introduces a 3D face representa-
tion to guide the shape transferring, obtains higher pose error than
ours, and ours is better at ID preserving. DeepFakes obtains the
lowest pose and expression performance given that it only blends
a square of the target face. SimSwap is the best model for pose and
expression preserving, but this method swaps a little in perception
compared with the target face image due to high reconstruction.

5.2.2 Qualitative Results. As shown in Figure 9, we list the
swapped results on the FF++ dataset. Our method performs the
most similarity identity with the source face. When compared
with the 3D guided shape-aware method HifiFace [Wang et al.
2021a], we observe that our swapped face shape is transferred
more similarly.

5.3 Results on Wild Images and FFHQ Test Split

5.3.1 Performance on Wild Images. We collect celebrity images
for swapping to demonstrate the identity-preserving ability of our
method. As displayed in Figures 1 and 10, the swapped celebri-
ties can be recognized at a glance more than other methods. This
finding shows the superior identity-preserving capability of our
method.

5.3.2 Performance on FFHQ Test Split. Results on the FFHQ test
split are displayed in Figure 11. Compared with others, ours has a

3https://github.com/cnnlstm/FSLSD_HiRes/issues/10
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Table 1. Quantitative Results on FF++ Dataset with Six Metrics

Method CosFace Ret.↑ FaceNet Ret.↑ CosFace Sim.↑ FaceNet Sim.↑ Pose↓ Exp.↓

DeepFakesa 0.818 0.462 0.449 0.577 8.852 0.189

FaceShifter [Li et al. 2020] 0.798 0.702 0.518 0.673 2.513 0.054

MegaFS [Zhu et al. 2021] 0.874 0.818 0.499 0.754 3.511 0.123

InfoSwap [Gao et al. 2021] 0.993 0.915 0.655 0.760 2.463 0.079

StyleFusion [Kafri et al. 2022] 0.284 0.169 0.288 0.430 6.452 0.080

FSLSD [Xu et al. 2022a] 0.303 0.144 0.271 0.446 3.838 0.149

RAFSwap [Xu et al. 2022b] 0.043 0.009 0.167 0.135 2.693 0.072

E4S [Liu et al. 2023] 0.945 0.845 0.548 0.684 3.868 0.087

AEI-Net [Li et al. 2020] 0.835 0.730 0.525 0.641 7.912 0.349

+ Ours 0.994 (+0.159) 0.972 (+0.242) 0.711 (+0.186) 0.815 (+0.174) 2.801 (−5.111) 0.088 (−0.261)

SimSwap [Chen et al. 2020] 0.958 0.874 0.602 0.720 1.260 0.034

+ Ours 0.990 (+0.032) 0.968 (+0.094) 0.674 (+0.072) 0.785 (+0.065) 2.159 (+0.898) 0.063 (+0.029)

HifiFace [Wang et al. 2021a] 0.878 0.772 0.561 0.692 3.025 0.084

+ Ours 0.986 (+0.108) 0.954 (+0.182) 0.652 (+0.091) 0.767 (+0.075) 2.615 (−0.410) 0.083 (−0.001)

↑ indicates that, when the score is higher, the model performance is better, and vice versa. The best scores of each metric are in bold, and the second
scores are underlined.
a https://github.com/deepfakes/faceswap

Fig. 9. Qualitative comparison results on FF++ dataset. Ours keeps abundant facial features such as face shape to obtain a high identity-preserving effect.

Besides, our model preserves pose and expression consistent with the target face.

significant advantage in face-shape transferring. These results indi-
cate that, when applied to cross-gender or cross-age swapping, our
method can keep the identity-related global features of the source,
such as face shape, gender, and facial attributes.

5.4 Ablation Study

We conduct a detailed ablation study on CSCS to verify the effec-
tiveness of our framework. The study is unfolded from four as-
pects: the entire pipeline, the surrogates, explicit adaptation, and
the ID adapter.

5.4.1 Validation of the Pipeline. We conduct an ablation study
on each component of our method to measure the entire pipeline.
The quantitative results are shown in Table 2, and qualitative re-
sults are shown in Figure 12(a). We observe that, without proxy-
paired data, our training setting can only obtain poor-quality out-
put and numerical results, which shows the capability of speedy
convergence. Moreover, the ID similarity and attribute measure-
ments in Table 2(a) are enhanced largely, which reflects the advan-
tage of CSCS. In Figure 12(a), the face-shape transferring is clear
to observe, which indicates that paired data adaptation helps the
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Fig. 10. Qualitative comparison results of SimSwap, InfoSwap, and ours

on wild images. InfoSwap generates shape-aware realistic images but not

as good as ours, while SimSwap changes slightly compared with the target

image, particularly in face shape.

Table 2. Quantitative Ablation Study of Our Method

Method CosFace Sim.↑ FaceNet Sim.↑ Pose↓ Exp.↓

Ours 0.711 0.815 2.801 0.088

w/o ID Adapter 0.672 0.782 2.885 0.095

w/o Adapatation 0.657 0.768 2.674 0.088

w/o Proxy Paired Data 0.525 0.641 7.912 0.349

AEI-Net w Shape Aug. 0.546 0.663 11.165 0.310

Only Proxy Data w/o ID loss 0.398 0.509 2.111 0.067

Only Proxy Data w ID loss 0.637 0.744 2.393 0.087

SimSwap [Chen et al. 2020] as Surrogate 0.672 0.788 2.234 0.086

PIRender [Ren et al. 2021] as Surrogate 0.640 0.746 3.557 0.118

LIA [Wang et al. 2021d] as Surrogate 0.682 0.797 2.638 0.083

Rotation as Surrogate 0.691 0.809 2.449 0.083

Single Target Surrogate 0.699 0.810 3.456 0.117

Single Source Surrogate 0.445 0.573 9.017 0.226

Bad Target Surrogate 0.648 0.763 3.864 0.152

Bad Source Surrogate 0.640 0.746 3.557 0.118

Fine-tune ID Encoder 0.018 0.039 6.282 0.291

ID Adapter with “Concat” 0.726 0.822 3.720 0.135

model extract the face-shape attributes of the source face and suc-
cessfully transfers shape to swapped faces. In addition, shape adap-
tation on paired data benefits the identity of qualitative results.

We demonstrate more results among different network architec-
tures on wild images and FFHQ test split in Figure 13 to verify
the advantages of our method as a novel framework. The results
show the effectiveness of our framework apart from the results in
Section 5.2. For swapped results on wild images and FFHQ test

Fig. 11. Qualitative comparison results of SimSwap, InfoSwap, and ours

on FFHQ test split. InfoSwap generates shape-aware realistic images but

not as good as ours, while SimSwap changes slightly compared with the

target image, particularly in face shape.

Fig. 12. Ablation of the pipeline. P means proxy paired data, A means

shape adaptation, and I means ID Adapter. In our training set, the model

outputs poor-quality images without proxy-paired data. Shape adaptation

enhances face-transferring capability. By introducing an ID adapter, face

shape, and identity attributes are preserved better.

split, we utilize our implemented HifiFace and AEI-Net models
due to the inaccessible weight. Our framework significantly im-
proves the identity-preserving capability compared with base mod-
els among different face domains.

We further explore the effectiveness of our methods on conver-
gence in Figure 14, where we list comparison results of continuous
training steps. We observe that training with proxy-paired data
helps the model output high-quality results and keep attributes
like expression. The reason is that proxy-paired data provides in-
tuitive supervision, which benefits the convergence speed of face-
swapping training.
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Another important concern is about the training and inference
cost. The inference is the same as the baseline model given that no
additional modules are proposed. The training dataset and steps
are the same as the baselines. The only additional cost is the time
to generate proxy-paired data, which takes about 16 to 24 hours in
our experiments.

5.4.2 Validation of Surrogates. To ensure the reliability and
credibility of dual-creating surrogates, we conduct evaluations
from the following aspects: the necessity of both surrogates, the
choice of each one, and the persistence of identity loss on proxy-
paired data.

First, we evaluate the setting of a single surrogate, which means
only target or source-creating surrogate is applied. For a single

target-creating surrogate, we set x
p
src equals y

p
дt . In this setup,

proxy-paired data can also be generated, which yields a complete
training pipeline. For a single source-creating surrogate, the proxy

target facesx
p
tдt cannot be prepared, and our framework fails to op-

erate properly. In this scenario, we use the proxy source face x
p
src

as a kind of data augmentation. The results are shown in Figure 15
and Table 2. In the setting of a single target-creating surrogate, the

x
p
src = y

p
дt setup gives the same identity for training and obtains

high numerical ID-preserving results. However, the qualitative re-
sults show overfitting and apparent color artifacts. Single source-
creating surrogate gives similar results with no proxy-paired data
setting, as discussed in the above-mentioned paragraph because of
the absence of explicit supervision.

Besides the necessity of both surrogates, we validate the choice
of each one. The choice of source-creating surrogate depends on its
identity-preserving capability. Although imperfect, reenact mod-
els provide complementary information to guide face swapping
in our framework. We vary the selection of source-creating sur-
rogate while Face-Vid2Vid [Wang et al. 2021c] keeps as target-
creating surrogate. In this experiment, another reenact model,
namely, LIA [Wang et al. 2021d], and rotation augmentation (rotate
between −30◦ and 30◦) are chosen as source-creating surrogates.
Face-Vid2Vid is based on implicit 3D facial landmarks, while LIA
utilizes latent motion representation. Apart from the complex ap-

proach, the simple rotation operation provides x
p
src with a slightly

modified pose, which can also serve as our source surrogate given

that it keeps the identity of y
p
дt . The comparable results are shown

in Figure 15. The quantitative findings and identity-preserving re-
sults reveal that different source surrogates work similarly in our
framework. We vary the surrogate models with others. We replace
InfoSwap [Gao et al. 2021] with SimSwap [Chen et al. 2020] as the
target-creating surrogate, and the results are shown in Figure 17.

SimSwap supplies marginally altered x
p
tдt compared with InfoS-

wap. However, the results in Figure 15 show that the swapping re-
sults obtained by replacing different pretrained models for the sur-
rogate model are consistent. The comparison results demonstrate
the effectiveness of our methods as a framework, rather than rely-
ing on the specific surrogate model used.

Another consideration in this section is the persistence of iden-
tity loss on proxy-paired data. Although proxy-paired data provide
credible supervision guidance toward repairing the weakness of
identity loss, CSCS is not intended as its replacement. Common

face recognition models are trained on millions of faces, such as
MS1M [Guo et al. 2016] while face swapping at a smaller scale of
training data. Therefore, they are powerful but have imperfect ca-
pability in the face-swapping task. Accordingly, we believe that
joint training with common identity loss and corresponding sam-
ples could work better with our framework. Table 2 and Figure 15
show the results for training only on proxy-paired data with and
without identity loss. Without identity loss, the training conver-
gence becomes hard, which reveals the identity loss capability. Fur-
thermore, with only proxy data, the changes in identity become
less apparent.

5.4.3 Validation of Explicit Adaptation. Explicit adaptation on
paired data is another crucial module within CSCS, which provides
flexible and carefully revised guidance for face swapping. In this
part, face-shape adaptation, which is closely associated with iden-
tity preservation, will be primarily discussed. Other face-swapping
applications accomplished by specific adaptation operations are
demonstrated in the following Section 6.

The detailed visualization of face-shape adaptation can be found
in Section 4.2. We have shown an improvement in face-shape trans-
ferring due to this adaptation. Moreover, we display the swapped
results on shape-adapted proxy-paired data in Figure 16 compared
with InfoSwap and SimSwap. InfoSwap and SimSwap keep the face
shape from the target face, which indicates the disadvantage in
face-shape transferring by other methods compared with ours.

The other meaningful investigation is to compare our frame-
work with face-shape augmentation directly applied to training
data. We randomly augment the face shape on our training set to
reach the data scale of our setting and train our baseline swapping
model on it. Experiment results are displayed in Figure 17, where
baseline model training with augmentation is insufficient to gener-
ate high-quality and shape-awareness results compared with ours.
The reason is that augmentation only diversifies the dataset and
does not support the more credible guidance. Meanwhile, CSCS,
gives the appropriate guide by creating proxy ground-truth pairs
through reversely utilizing the augmentations. Furthermore, train-
ing the face-swapping model with only identity loss is unstable,
and joint training with proxy-paired data significantly improves
the swapping results.

5.4.4 Validation of ID Encoder Adapter. To investigate the im-
pact of the configuration of the ID adapter, we conduct a compara-
tive analysis using two different settings: (i) Fine-tuning of ID En-
coder: In this setting, we fine-tune the ID encoder during training;
(ii) “Concat” Operation Replacement: This setting involves substi-
tuting the “Add” operation in Equation (6) with the “Concat” op-
eration and removing the unnecessary zero convolution layer. We
present the results of this comparison in Table 2 and illustrate them
in Figure 18. In the case of the fine-tuning setting, the quantitative
identity results are nearly zero, and the qualitative assessment in-
dicates that the swapped faces do not resemble either the source or
target face. This finding underscores the fact that direct fine-tuning
leads to overfitting the training data, which results in incorrect
outcomes. Although the “Concat” setting achieves a high degree
of identity similarity, it fails in preserving pose and expression, as
evidenced by quantitative and qualitative results. Ultimately, the
“Add” operation exhibits a superior balance among the adapter
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Fig. 13. Qualitative results with different backbones. All of them achieve high ID preserving and the ability to transfer face-shape than base model results.

Fig. 14. Ablation analysis with proxy paired data at different training steps

(twice the steps of w/o proxy paired data setting is equivalent to ours). Train-

ing with proxy-paired data speeds up the convergence effectively and con-

tributes to image quality and attribute preservation.

settings, which offers improved outcomes in terms of identity
preservation and maintaining pose and expression.

5.5 User Study

We conduct a user study on FF++. We randomly sample 100 swap-
ping pairs from the abovementioned experiment on FF++, and cor-
responding swapped results are gathered to operate the user study.
We consider three kinds of measurements, namely, identity pre-
serving, face-shape transferring, and overall quality. We ask par-
ticipants to choose the more suitable swapped image from two re-
sults: ours and a randomly selected comparison method. Moreover,
we ask users what factors influence the choice of overall quality,
including identity, shape, image quality, or neither. A total of 45
users are organized, and each is asked to answer 30 question pairs.
The results are presented in Figure 19.

Figure 19(a) presents a Sankey diagram, which demonstrates the
choice flow. Specifically, most users who select the face shape also
choose the identity, and a few select the comparison method. The

Fig. 15. Evaluation on Surrogates. SS stands for source surrogate, TS

stands for target surrogate, and OPP stands for training only on proxy-

paired data.

Fig. 16. Face-shape adaptation and comparison. After adaptation, ours

generate shape-preserving results compared with others.

same phenomenon also occurs between choice identity and overall
quality. When users are requested to answer what factors influence
the overall selection, most of them choose the identity, and face
shape is the second most chosen. Results indicate that most people
are impressed by CSCS’s identity-preserving capability.

The detailed user preferences are listed in Figure 19(b). The
results show that our method is superior to other methods in all
measurements. In detail, HifiFace [Wang et al. 2021a] obtains the
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Fig. 17. Results compared with augmentation. Face-shape augmentation

diversifies training data distribution, which is insufficient to enable shape

transferring without proxy-paired data.

Fig. 18. Analysis of different ID adapter configurations. Fine-tuned ID en-

coder generates wrong swapped faces, while “Concat” fails to preserve

expression. “Add (Ours)” outputs the best results considering identity pre-

serving and attribute transferring.

nearest users’ preference with ours, particularly in overall quality
and face shape. This phenomenon is due to the 3D-guided and
auto-blending strategy in HifiFace, while we still have 80% votes,
which demonstrates our method’s face-shape transferring ability.

5.6 Discussion: Influence of Surrogates on Identity

The generative capability scope of the chosen surrogates decides
the attributes of proxy-paired data, which could influence the per-
formance of the final obtained model, especially for identity. To
investigate the influence, we show the detailed performance upon
the choice of surrogates.

5.6.1 Influence of Target Surrogates. As shown in Figure 20,
InfoSwap has a certain capability for facial-shape transferring,
while SimSwap barely modifies facial shapes. Therefore, the per-
formance of models trained by the two surrogates shows a no-
ticeable difference in facial appearance. Figure 21 illustrates that
models trained using InfoSwap as a surrogate exhibit pronounced
facial-shape transferring capability, while SimSwap does not. This
finding is also reflected in numerical results, with the former main-
taining better identity preservation, while the latter, holds a cer-
tain advantage in preserving pose and expression in Table 2 due to
lesser variations compared to the target. On the one hand, when
constructing proxy-paired data, the surrogate used must consider
some of its own performance. On the other hand, explicit adapta-
tion is important, because it can mitigate the shortcomings of the
surrogate’s own capabilities to some extent.

(a) Proportion of user preferences

Method Identify Face shape Overall
Ours vs DeepFakes 90.31 95.47 96.02
Ours vs SimSwap 87.29 89.60 96.88
Ours vs FaceShifter 84.84 91.21 87.19
Ours vs HifiFace 85.41 82.73 76.61
Ours vs MegaFS 85.86 89.00 87.65
Ours vs InfoSwap 93.74 95.66 96.16
Ours vs StyleFusion 93.92 82.69 83.55
Ours vs FSLSD 90.06 91.22 95.35
Ours vs RAFSwap 94.81 89.34 94.72
Ours vs E4S 88.38 88.40 93.88

(b) Proportion of wins (%)

Fig. 19. User study results. (a) The Sankey diagram displays the users’

preference between ours and other methods, (b) detailed results in each

comparison.

5.6.2 Influence of Source Surrogates. We use the proxy source

images x
p
src generated by Face-Vid2Vid and LIA in Figure 20 to in-

vestigate the influence of source surrogate for identity preservation.
Compared with the target surrogate, the source surrogates require

that the generated proxy image x
p
src maintains consistency with

the original image in terms of identity, which does not explicitly
affect the ID functionally. As shown in Figure 20, although the two
methods exhibit varying abilities in preserving the expressions of
the driver, they are essentially consistent in terms of ID. Therefore,

the constructed x
p
src are all usable. As a result, both source surro-

gates show significant improvements in numerical results. Further-
more, we provide new qualitative results in Figure 20, including
rotation as a source surrogate. The qualitative results show that
LIA produces similar results to Face-Vid2Vid, while the ability of
rotation to simulate the proxy source is inferior, which results in
slightly poorer performance in the results, although it also exhibits
decent performance. Overall, as long as the source surrogate can
achieve the goal of maintaining ID to construct the proxy source

x
p
src , it can yield comparable results.

5.7 Discussion: Influence of Poor Surrogates

We conduct two additional sets of experiments focusing on the ar-
tifact issues in the source and target surrogates, respectively, to
investigate the impact of artifacts present in proxy data on the
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Fig. 20. Comparisons of proxy data generated by different surrogates. In-

foSwap has a more shape-transferring capability compared with SimSwap,

where LIA performs similarly to FaceVid2Vid.

results. Specifically, we artificially create two models with evident
artifacts in their generated results. For the source surrogate, we
employ PIRender [Ren et al. 2021] due to its significant deviations

in aligning key points, which result in noticeable artifacts in x
p
src

on our proxy pairs. As for the target surrogate, we utilize a base
model with poorly optimized training parameters, which leads to
artifacts in the results. Images generated from the two poor surro-
gates are illustrated in Figure 22.

We replace the according portion of the original proxy-paired
dataset with proxy data generated by these two poor surrogates,
each exhibiting evident artifacts. Subsequently, we conduct two
sets of experiments, and the qualitative and quantitative results of
these experiments can be observed in Figure 23 and Table 2, respec-
tively. Next, we analyze the results of the two sets of experiments.

5.7.1 Influence of Poor Source Surrogate. For the poor source
surrogate, although recognizing the proxy source as a person in
Figure 22 is difficult, the final results in Figure 23 show that high-
quality generations are still obtained. The reason is that the ro-
bust ID encoder of the face-swapping model is not tuned. How-
ever, the identity-preserving capability has weakened. Despite the
decreased identity similarity in Table 2, the third row of Figure 23
shows that the model generates an identity (Asian) that is com-
pletely unrelated to the source (African) and target (Caucasian).

The reason is that x
p
src constructed through a poor source sur-

rogate exhibits significant artifacts. In terms of pairing, it differs

markedly from y
p
out . Thus, the exchange of identity information

between them is invalid. Consequently, the model learns erro-
neous representations of identity.

5.7.2 Influence of Poor Target Surrogate. For the poor target

surrogate, given that a complete (x
p
tдt , y

p
out ) pair cannot be con-

structed, the quality of the generated images exhibits a noticeable
decrease. In addition, the generated results exhibit better identity
preservation than the poor source surrogate, as shown in Figure 23
and Table 2, due to the undisturbed flow of identity transmission.
Meanwhile, compared with the target surrogate (a face-swapping

model) used to generate x
p
src as illustrated in Figure 22, our ap-

proach significantly improves the quality of the generated images.
This finding provides further evidence of the effectiveness of CSCS.

The two experiments indicate that the artifacts stemming from
the surrogate significantly impact the training results. Therefore,

Fig. 21. Comparing different surrogates of their impact on final results.

With more capability of shape transfer, the target surrogate InfoSwap per-

forms better than SimSwap, especially on shape. Meanwhile, the results of

LIA as SS are similar to ours, while rotation as SS performs slightly worse.

TS means target surrogate and SS means source surrogate.

careful consideration is required when selecting surrogates to en-
sure alignment with expected performance. Nevertheless, even in
scenarios where the constructed proxy-paired data exhibit notice-
able artifacts, CSCS exhibits inherent robustness, which is ensured
by the use of real images as ground truth.

6 Applications

The practice of face swapping has a diverse utility within the realm
of digital face generation. We will illustrate the applications of our
approach involving specifically adapted swapping, re-aging, cross-
domain swapping, and video face swapping.

6.1 Re-Aging

An important application of face swapping is re-aging, which in-
volves transforming the age of one face to become older or younger.
Face re-aging is applied in the film industry, and face swapping has
certain advantages compared with other methods as it utilizes an
image of the actor at a certain age for the purpose of re-aging. We
collect some celebrities’ pictures and apply our model for re-aging,
and the results are illustrated in Figure 24. To enhance image qual-
ity because of the limitation on 256 pixel resolution of our model,
we utilize GFPGAN [Wang et al. 2021b] to restore the face resolu-
tion. This approach slightly wealems the identity-preserving capa-
bility. However, our method still obtains satisfactory results.

6.2 Swappable Attribute Customization

Compared with current face-swapping methods, we propose a con-
figurable formulation for face-swapping tasks from the perspective
of identity preservation. To investigate the potential applications
of our framework, we set two different real-world customized set-
tings, namely beard removal and glasses transfer. We also imple-
ment suitable adaptations to adapt to these conditions, as described
in Section 3.1 and Section 4.2. Following the default configuration
of identity in Section 3.1, the two configurations can be formulated
as follows:
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Fig. 22. Proxy paired data produced by our setting and surrogates with

apparent artifacts. SS means source surrogate; TS means target surrogate.

Fig. 23. Comparisons on surrogates with apparent artifacts. SS means

source surrogate; TS means target surrogate.

Fig. 24. Application I: re-aging. Re-aging results for Keanu Reeves and

Leonardo DiCaprio. GFPGAN [Wang et al. 2021b] is applied to enhance

the face quality. Note that the face restoration model may hurt identity

preservation slightly.

— Config of bread removal: Attrid = AttrD
id
− { bread } and

Attrnid = AttrD
nid
∪ { bread },

— Config of glasses transfer : Attrid = AttrD
id
∪ { glasses } and

Attrnid = AttrD
nid
− { glasses }.

In detail, we add beard on x
p
src and remove it on y

p
дt , as shown

in the first row of Figure 25. For the glasses transfer, x
p
src and y

p
дt

are attached to glasses in the second row of Figure 25. The face-
swapping model is fine-tuned with adapted data for five epochs,
and the results are shown in Figures 26(a) and (b).

Fig. 25. Application-II: Customized adaptation on proxy-paired data for

beard removal and glasses transfer. The first row displays the adapted pair

for beard removal, as x
p
sr c has been edited to add more beard, while y

p
дt

is removed. The second row is the pair for glasses transfer, where x
p
sr c and

y
p
дt are both added glasses while x

p
tдt at the opposite.

Table 3. Customized Swapping Compared with Editing

Method CosFace Ret.↑ FaceNet Ret.↑ CosFace Sim.↑ FaceNet Sim.↑

Beard remove comparison

Origin Ours 0.967 0.905 0.697 0.755

GAN Edit 0.169 0.074 0.221 0.375

Adapted Ours 0.966 0.888 0.623 0.726

Glasses transfer comparison

Origin Ours 0.962 0.853 0.623 0.732

GAN Edit 0.317 0.256 0.270 0.463

Adapted Ours 0.973 0.895 0.658 0.756

Face editing models lower down the retrieval and similarity numbers, while our
adapted models could obtain comparable identity-preserving results.

We compare our fine-tuned models with the image editing meth-
ods by applying them to the origin output, and the qualitative and
quantitative results are displayed. To compute quantitative results,
we conduct 2K swapping pairs in the FFHQ test split and compute
the ID retrieval rate and cosine similarity. The results show that
our adapted model allows for better preservation of identity infor-
mation while completing the intended usage. In some cases, it may
obtain higher identity numerical results in Figure 26(b), which re-
flects that glasses transfer could benefit identity preservation as
well.

6.3 Cross-domain Results

Another usual application is cross-domain face swapping. Many
image domains of the face, excluding realism, include art paint-
ings, sculptures, and cartoons. Face swapping between different
face domains has a board application prospect, and it poses a fur-
ther challenge to the capability of the swapping model. Moreover,
preserving identity between different domains in swapping is an
unexplored question.

We present face-swapping results in different domains. Met-
Faces [Karras et al. 2020a], an image dataset of human faces ex-
tracted from works of art, is applied in this setting. We swapped
real faces with artistic faces, or vice versa, and the results
are illustrated in Figure 27. Surprisingly, ours keeps a superior
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Fig. 26. Application-II: swappable attribute customization. On the foundation of the model’s capacity to accomplish these specific functions like beard

removal and glasses transfer, ours get better identity-preserving results compared with other GAN editing methods.

identity-preserving capability to comparison methods regardless
of whether the source face is real or artwork.

6.4 Video Face Swapping

Face swapping needs to obtain stable video results, especially in
identity preserving for videos. We add two video-level losses dur-
ing training to improve video stability. The stitch tuning loss is
borrowed from STIT [Tzaban et al. 2022]. We simplify it as

Lst itch = Lr ec (xtдt ·mbak ,yout ·mbak ), (13)

where mbak is the background mask generated by a segmenta-
tion model. In this case, the head mask is applied. The loss is uti-
lized after the face-swapping training when the capability of shape
transferring is already ready. We apply element-wiseor operator to
the mask from xtдt and yout to obtain mbak for face-shape trans-
ferring. Another loss is the cross-frame similarity loss [Liu et al.
2021b],

Lis = Lr ec

(
cos

(
f t
tдt , f

t+1
tдt

)
, cos

(
f t
out , f

t+1
out

))
, (14)

where f t
tдt , f t+1

tдt , f t
out , and f t+1

out represent the model’s feature

map of xtдt and yout for frame t and t + 1, which aims to keep
the attribute difference between consecutive frames for enhancing
frame consistency. To further reduce flickering defects, we apply
a deflickering method [Lei et al. 2023] on the swapped video. Our
results are illustrated in Figure 28, where the identity preservation
in videos is well performed and has a good performance on frame
consistency. The video results can be found in the supplementary
materials.

7 Limitation and Future Work

Although the CSCS framework achieves better identity-preserving
face-swapping results, the proxy-paired data utilized in the

Fig. 27. Application-III: art-to-photo/photo-to-art/art-to-art swapping.

Despite having different source and target domains, our method maintains

a superior capability for preserving identity when compared qualitatively

with others.

framework remain imperfect and could introduce errors. Despite
constructing better proxy pairs in one shot, training in a progres-
sive approach to iteratively refine the model based on ongoing
results could yield further improvements.

Our model occasionally produces unnatural results in the eye
area, which is possibly attributable to the limited resolution of
our model. It is set at 256 pixels, which may result in inadequate
attention to small-scale eye regions. To alleviate this problem, we
train a new model with 512 pixels, and the result is illustrated
in Figure 29. The comparison shows that the 512-pixel model
performs better in small regions with natural eyes.

Another limitation is that while we have defined identity preser-
vation and our framework allows for the configuration of identity
as needed by users, certain attributes, such as hairstyle and skin
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Fig. 28. Application-IV: video face swapping. The first row of each video result is the swapped face and the target frames are listed in the second row. Our

method could get consistent results with pose and expression from the target preserved as described in Section 6.4.

color, cannot be fully generated according to the configuration in
some cases due to the lack of suitable tools for constructing proxy-
paired data. These issues might be alleviated with better portrait
editing tools.

8 Border Impact

Face swapping could be used maliciously to create DeepFake
videos, which may bring adverse social impacts. We deeply un-
derstand the possible negative influence of face-swapping technol-
ogy, and will strictly prevent the spread of our method. Besides,
studying the face-swapping methods can help researchers build
effective DeepFake detection tools [Gao et al. 2021; Rössler et al.
2019]. Apart from the negative usages, there still exists positive
applications for face swapping, including privacy protection and
entertainment.

9 Conclusion

In this study, we propose the CSCS framework to add explicit
supervision to alleviate the identity-preserving problem caused
by implicit supervision in face swapping. Our CSCS approximates
ground-truth paired data from a real face image by dual-creating
surrogates. It sets the proxy-paired data as credible explicit
supervision to guide face-swapping training, which gives credible
and effective direction to boost the identity-preserving capability.
We further propose explicit adaptation on paired data and implicit
adaptation on ID encoder, where explicit adaptation with handy
adaptation enhances the capability for face-shape transferring and
customized swapping. Moreover, implicit adaptation with a novel
ID adapter architecture narrows the gap between face recognition
and face swapping. Our method is easy to use and can be used as a
plugin on different network architectures. Extensive experiments
and user studies show that the face-swapping model trained using
our framework achieves high identity-preserving and face-shape
transferring results compared with state-of-the-art methods. It
has comparable performance in target attribute consistency and

Fig. 29. Comparison with higher-resolution model. The eye region be-

comes better.

generation quality. Furthermore, our method has a diverse range
of applications.
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