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Segmenting a Deforming Mesh into Near-Rigid Components

Abstract Given a deforming mesh in an animation, we pro-
pose a new method to segment this mesh into several near-
rigid sub-meshes. From this deforming mesh over all frames
of an animation, we can analyze the degree of deformation
between two nearby faces on the mesh. Then, our algorithm
partitions the given deforming mesh into near-rigid compo-
nents where the segmentation boundaries always pass at re-
gions of large deformation. As a result, the mesh segmenta-
tion is invariant to all frames of the given animation and the
motion of faces in each near-rigid-component can be rep-
resented by the same approximate affine transformation. To
demonstrate the usefulness of the algorithm, we solve the
restriction of deformation transfer for triangle meshes [31]
which requires similar reference poses between source mesh
and target mesh.

Keywords near-rigid sub-meshes· mesh segmentation·
deformation transfer

1 Introduction

1.1 Background

Mesh segmentation plays an important role in computer graph-
ics for applications such as metamorphosis [10,17,18,22,
30,33], texture mapping [12,20], compression [14,19], sim-
plification [8], collision detection [21], and skeleton extrac-
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tion [16]. Different applications may require different mesh
segmentations due to their different requirements. In gen-
eral, most previous studies can be classified into two cat-
egories: patch-based and part-based segmentation methods
[29]. The patch-based methods usually segment a mesh into
disk-like patches for applications such as texture mapping
[12,20] and parameterization [10]. On the other hand, the
part-based methods partition a mesh into several so-called
meaningful components [1,2,15,16,25] for applications such
as modeling by example [7] and 3D model retrieval [34].

1.2 Related Work

Using different partitioning metrics, many automatic ap-
proaches have been proposed such as region growing [13],
hierarchical clustering [9], iterative clustering [23,27], spec-
tral clustering [5], fuzzy clustering [16] and approximate
convex decomposition [21]. Among them, many distance
metrics such as geodesic distance and angular distance be-
tween triangles are used to partition static meshes. Large
distance usually means the barrier exists between partitions,
thereby cutting the given mesh into sub-meshes at regions
with large distance.

Most previous methods concentrate on segmenting static
meshes. Recently, there are several methods working on seg-
menting non-static (e.g. deforming) meshes [11,15,19,28].
In [15], the approach transforms the original mesh into a
multi-dimensional space so that the sub-meshes are similar
in different poses. In [11], the mean shift clustering of ro-
tation sequence is used to identify the near-rigid structure
of the deforming mesh and the near-rigid structure is con-
sidered as a skeleton of the original animation to obtain the
bone skin weights. However, in [11], there is no attempt to
separate the mesh apart clearly; faces in deformable regions
are not clustered into any partition. Furthermore, even some
faces in the same partition are not connected. Therefore, [11]
can not benefit too much for some applications with the re-
quirement of the faces to be connected in the same parti-
tion. Both [19,28] analyze the motion for each vertex and
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cluster the vertices with similar motion, thereby partitioning
meshes into sub-parts. Both methods compress each parti-
tion independently in their animation compression applica-
tions. However, from their results, the cutting boundary may
deviate from the deformable regions. Therefore, the near-
rigid partitions are not always obtained.

1.3 Contributions

In this paper, we propose a new method to segment a de-
forming mesh into several near-rigid sub-meshes. We de-
scribe a new distance metric based on the degree of the de-
formation between two nearby triangles over all frames of
an animation. In this paper, a region with larger distance be-
haves with more deformation than areas with smaller dis-
tance. The proposed algorithm sets segmentation boundaries
at regions with more deformation in order to obtain near-
rigid sub-meshes. These near-rigid sub-meshes are poten-
tially helpful to many applications such as LOD of an ani-
mation mesh [11] and deformation transfer [31].

In [31], there is a very useful approach proposed to transfer
the existing deformation from the source mesh to the target
mesh. However, this approach requires the reference poses
of both source and target meshes to be similar. Otherwise,
the transferred results can be very unpleasant. Since our seg-
mentation method can segment a deforming mesh into near-
rigid sub-meshes, we can determine the rigid transformation
of each near-rigid sub-mesh; thereby adjusting the reference
poses of both source mesh and target mesh to be similar. The
deformation transferred from source mesh to target mesh
with variant reference poses is used to demonstrate the use-
fulness of the proposed algorithm.

2 The Distance Metric for Deforming Mesh

We propose a distance metric based on the deformation gra-
dient [31] of two adjacent faces in an animation sequence.
In this paper, this metric is called deformation distance. A
very recent work [26] in mesh editing application also uses
deformation gradient to extract material properties includ-
ing rigid and non-rigid information. Deformation gradient is
the non-translation portion of an affine transformation which
can represent the change between the reference pose and the
aimed pose, including orientation, scale and skew. Letvi and
ṽi , i ∈ 1. . .3, be the vertices of two triangles, and Sumner et
al. [31] add the fourth vertexv4 in the direction perpendicu-
lar to the triangle, where

v4 = v1 +
(v2−v1)× (v3−v1)√
(v2−v1)× (v3−v1)

(1)

Therefore, the non-translation transformation (i.e., deforma-
tion gradient) between these two triangles can be obtained

by M = ṼV−1, where

V = [v2−v1 v3−v1 v4−v1] (2)

Ṽ = [ṽ2− ṽ1 ṽ3− ṽ1 ṽ4− ṽ1] (3)

Thus, for each aimed poset in the animation sequence, we
can determine the deformation gradient of each facefi , be-
cause there exists a deformation transformationMt

i between
f r
i and f t

i , where f r
i and f t

i denotefi in reference and aimed
poses, respectively. The difference of the deformation gra-
dient between any two adjacent faces,fi and f j can be ob-
tained by a matrix subtractionMt

i −Mt
j . We set the Frobe-

nius norm of this difference to be the deformation distance
between these two faces. In addition, our algorithm normal-
izes this distance by dividing it by the geodesic distance
Geod( fi , f j), whereGeod( fi , f j) is the distance between the
centroid of adjacent faces,fi and f j . This is due to the follow-
ing observation in Figure 1. In this figure, when two similar
discrete lines are bent into curves, the one with fewer ver-
tices has larger rotation angles for adjacent edges marked by
circles. Therefore, we should take this factor into account
and make deformation of the smaller triangles as obvious as
possible by geodesic length normalization. This is especially
true in deformable regions which usually have smaller faces
than other regions. Later in Section 3.2, this observation is
very useful to determine if two adjacent faces are deformable
or not. The normalization of deformation distance can deal
with both cases well in Figure 1.

Fig. 1 The right curve with more vertices has smaller rotation angle
between adjacent edges.

Our algorithm computes the deformation distance between
adjacent facesi and j in each frame, and chooses the largest
one denoted asDi j . Di j is used to evaluate the degree of
deformation between these two faces among all frames of
the given animation. Therefore, the proposed distance metric
for the deformation of two adjacent faces is formulated as:

Di j = max(
‖Mt

i −Mt
j ‖2

F

Geod( fi , f j)
) ∀t ∈ T (4)

WhereT is a sequence of animation poses. The distance be-
tween two adjacent faces will be comparatively small if both
faces have similar deformation gradients. Otherwise, the dis-
tance becomes large. Barriers are formed at the place which
has a large deformation, and these barriers separate the faces
apart on the two sides of them. This is the reason why the
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proposed algorithm can partition the mesh at regions with
large deformation.

3 Segmentation Algorithm

The proposed segmentation method is composed of the fol-
lowing steps.

1. Generate a dual graph for the given deforming mesh in
Section 3.1.

2. Select feature faces and determine to which partition it
belongs in Section 3.2

3. Execute face clustering process to partition the mesh in
Section 3.3

4. Smooth segmentation boundaries in Section 3.4

More details about each algorithm will be described in the
following Subsections.

3.1 Dual Graph Generation

In [16], a dual graph of the mesh is generated to help mesh
segmentation. Our algorithm builds a dual graph for the given
deforming mesh, too. In this algorithm, the distance metric
for the dual graph is computed by the combination of geo-
desic distance and deformation distance. Since the distance
between two nearby faces is obtained, we apply all-pairs
shortest path algorithm to find out the distance between any
pair of faces on the mesh. The formal expression is shown
below:

Dis( fi , f j) = δ
Geod( fi , f j)
avg(Geod)

+(1−δ )
De f orm( fi , f j)
avg(De f orm)

(5)

Wherefi and f j are any pair of faces on the mesh,Geod( fi , f j)
andDe f orm( fi , f j) are the geodesic distance and deforma-
tion distance between facei and facej, respectively, andδ
is the user-specified weight which usually ranges from 0.1
to 0.2 in our experimental results.

3.2 Automatic Feature Faces Extraction

In this step, the algorithm automatically extracts several fea-
ture faces on the mesh to represent the initial partitions. Then,
the algorithm assigns the remaining faces to a certain parti-
tion in the face clustering step. The purpose of the algorithm
is to partition a deforming mesh into near-rigid sub-meshes.
Therefore, on each sub-mesh, the part that deforms the most
tends to lie near its boundary. In other words, the feature
faces to be extracted are the triangles far from these bound-
ary (i.e., deformable) regions.

Fig. 2 (a) We show the deformable regions on the mesh. The color
indicates that the region is deformable or not. It is close to blue if the
region has more deformation; otherwise close to white. (b) Showing
the faces in setA with maroon and setB with white. (c) A feature face
p in blue is extracted from setB. (d) The influence regionR in light
green is obtained by the level set algorithm. (e) Assign all the faces in
the influence region to setA.

After a feature facep has been extracted, our algorithm will
create an influence regionR for p. An influence regionR
is a near-rigid cluster and it includes a set of faces nearp.
For each pose, we use [31] to compute the deformation gra-
dients of all faces inR and then average these deformation
gradients [24] to represent the approximate deformation of
the influence regionR. The deformation ofR is near-rigid
throughout the animation sequence. Next, our algorithm will
checks if this newly founded feature facep will form a new
partition or will join with an existing partition. We determine
this by evaluating the similarity of two average deformation
gradient between any existing partition and this influence re-
gionR. Therefore, our algorithm may extract several feature
faces to represent a partition and potentially get the better
results, especially for the long, narrow sub-meshes. Finally,
our algorithm iteratively extracts other feature faces until the
area of the influence regionR is smaller than a certain thresh-
old.

Our feature extraction algorithm is described in the follow-
ing steps. In this algorithm, the face setsA andB are used to
help us to find the feature faces in the deforming mesh.

1. Look over all faces on the mesh and determine the face
fi is in the deformable region or not. If the distance from
fi to any of its adjacent facef j is larger than a certain
thresholdε, where this threshold ranges from 0.3 to 0.8
in our experimental results, we assignfi to the setA;
otherwise, assignfi to the setB (Figure 2 (a) to (b)). The
setB contains faces that deform slightly and are potential
candidates for features faces.

2. Extract the feature facep from the setB which is the
farthest face (i.e., with the maximum distance by Eq. (5))
to faces in the setA (Figure 2 (b) to (c)). This is a good
choice to pick a feature face that is far away from the
faces in deformable regions and all existing partitions.

3. Create the influence regionR for the new feature facep
and find the average deformation gradientN for R [24].
Then, we compareRwith all the existing clustersΨi , i =
1...k. If there exists some clusterj such that its average



4 Tong-Yee Lee et al.

deformation gradientN ´ is similar enough toN (i.e.,
‖ N−N ´‖2

F≤ γ, where this threshold ranges from 0.4
to 1.6 in our experimental results), we mergeR to Ψj ;
otherwise we setR as a new partitionΨk+1 (Figure 2 (c)
to (d)).

4. Move all faces includingp in the influence regionR from
the setB to the setA. Therefore, in the next iteration (in
step 2), we can find a new feature face that is not only far
away from the deformable region, but is also far away
from the existing partitions. Note that we letPi be a set
of feature faces in partitioni, wherePi ∈Ψi and is needed
in the face clustering algorithm in Section 3.3. Therefore,
the extracted feature facep is also assigned toPi . Repeat
steps 2 to 4 until the area of the influence regionR is
smaller enough (Figure 2 (d) to (e)).

Note that in the step 4, after several iterations, the influence
regionR is becoming smaller and smaller, since more and
more faces were grouped into the setA. This algorithm uses
the idea of the level set to create the influence region for a
feature face. We set the newly obtained feature face (in step
2) as level 1 and all remaining faces in the setA as level 0.
By applying [32], the harmonic distance can be viewed as
a fade out value between 1.0 and 0.0. Then our algorithm
picks up the faces whose value is between 1.0 and 0.01 to
form the influence region. Since faces in the setA were ex-
cluded for being selected as feature faces, we set these faces
as level 0. Therefore, the algorithm does not select any face
in the setA to appear in the influence region for a new fea-
ture face. Finally, after the above algorithm, the faces inPi
are extracted feature faces for partitioni.

3.3 Face Clustering

After the feature faces are selected in Section 3.2, the face
clustering algorithm determines to which partition each face
belongs based on the distance between the face and the fea-
ture faces. Since the distance is much larger when there are
deformable edges between two faces. In this case, they are
very likely to be assigned to different partitions. Therefore,
the partitions are separated by deformable edges. As shown
in Figure 3 (a), red circles are two feature facesl andr, and
the green triangle is an arbitrary face on the mesh. The path
from the green triangle to the left feature facel needs to take
more effort to cross a barrier (deformable edge), however, to
the right feature facer needs not. Therefore, the green trian-
gle is much closer to the right featurer, and face clustering
algorithm will assign the green triangle to the right partition.
Here we letPi andFi be the set of feature faces and the set
of all faces in partitioni, wherei = 1. . .k, F̄ =

⋃k
i=1Fi , and

P̄ =
⋃k

i=1Pi , such thatPi ⊆ Fi , Fi ∩Fj = /0 andPi ∩Pj = /0 if
i 6= j. Therefore, in order to achieve the above face cluster-
ing, our algorithm minimizes the following objective func-

tion:

min ∑
Pi⊆P̄

∑
f∈Fi

Dis( f , p) ∃p∈ Pi (6)

In the above equation,Dis( f , p) is the distance from facef
to feature facep.

Fig. 3 (a) For the green face, the distance tol is larger than the distance
to r because of the deformable edges. (b) The geodesic distance from
the green face tor is a lot larger and thus the combined distance is
enlarged.

However, due to unobvious deformable edges (i.e., deforms
slightly), or the geodesic distance is very far from the fea-
ture face, some faces near boundary may be assigned to the
wrong partitions by minimizing Eq. (6). For example in Fig-
ure 3 (b), if the geodesic distance from the green face to the
right feature facer is much larger, then the combined dis-
tance tor may be larger than the distance tol . Therefore, the
green face will be assigned to the wrong partition in the left
side. To reduce this problem, we consider the influence of
other non-feature faces in a partition. In Figure 3 (b), since
there is a deformable region, the distance between the green
face to all the faces in the left partition is larger. Therefore,
the average distance from the green face to the left partition
is probably larger than the right one, and then the green face
is assigned to the right partition. In addition, as mentioned
in Section 3.2, those feature faces are always selected to be
far away from deformable regions. It is a good heuristic to
make these feature faces to remain as close as possible to
the center of the partition. In other words, both the distance
from the face to feature faces and the average distance to all
faces in the partition are considered, and therefore we refor-
mulates the objective function Eq. (6) by the following:

min ∑
Pi⊆P̄

∑
f∈Fi

min(Dis( f , p),avg(Dis( f ,Fi))) ∃p∈ Pi (7)

Whereavg(Dis( f ,Fi)) is the average distance fromf to the
faces inFi , and the distance between the facef and the par-
tition i is min(Dis( f , p),avg(Dis( f ,Fi)) ∃p∈ Pi . The algo-
rithm executes face clustering by minimizing Eq.(7) in an
iterative manner which is described as follows:

1. Initially, consider the feature faces in each partition as its
initial partition. That is, we setFi = Pi .

2. Next, for each facef ∈ F̄ , assignf to the partitioni if
the distance (i.e., using min(Dis( f , p),avg(Dis( f ,Fi)))
∃p∈ Pi) from f to the partitioni is the shortest one.
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3. Finally, if there is a facef that belongs to partitioni in
the previous iteration, butf is assigned to partitionj in
this iteration, wherei 6= j, we repeat Step 2 to Step 3
again.

Sinceavg(Dis( f ,Fi)) will be changed as iterations are exe-
cuted, the partition of the facef where it belongs potentially
changes. The repeated loop will end until there is no face
transferred from one partition to another one. In our experi-
ment, the number of iteration is usually less than 10.

Using our face clustering algorithm, two disjoint regions
with similar movement may be clustered into the same parti-
tion as shown in Figure 4. By applying disjoint set algorithm
[6] to each partition, we can find out several clusters which
are disconnected to each other. The partition is valid if and
only if there is only one cluster in this partition. Otherwise,
our algorithm will assign the feature faces in each cluster to
a new partition and go back to the face clustering again.

Fig. 4 Disjoint regions (i.e., with same color) may be clustered into
the same partition.

3.4 Boundary Smoothing

Up to now, the algorithm has already segmented the de-
forming mesh into several partitions. But, the rough cut-
ting boundary may look visually unpleasant. So the goal of
this step is to make them as smooth as possible. There are
several boundary smoothing algorithms available to achieve
this goal [4,15,16]. For simplicity in implementation and
without changing the connectivity of the mesh, we refer to
[15] and apply maximum flow minimum cut algorithm [6]
to solve it. The idea of smoothing algorithm is to find a
minimum cut that can pass through the deformable region
with the smallest capacities. In order to preserve the smooth
boundary and cutting positions still lie on the deformable
regions, the capacity is the combination of the deformation
distance with the length of the edge which is shared by these
two faces. Therefore, we apply the definition of [15] and set
the capacity of each two adjacent faces in the region as fol-

Fig. 5 The tail of horse is segmented into three partitions according to
deformation information in its animation sequence.

lows:

Capacityi j = α
Di j

avg(D)
+(1−α)

edgei j
avg(edge)

(8)

whereedgei j is the length of an edge shared by facei and
face j, avg(D) is the average ofDi j , andavg(edge) is the
average ofedgei j . In our experimental results, we setα less
than 0.1.

4 Segmentation Results

Figure 7 shows several experimental results by using our
segmentation algorithm. Different partitions are rendered in
different colors and some key frames of their mesh sequences
are also shown in this figure. Using the proposed algorithm,
the segmented boundaries can always be set on the deformable
regions of the meshes. The meshes can be successfully par-
titioned into several near-rigid components. In the next sec-
tion, we will demonstrate the usefulness of these segmented
results. Let us have a further look at the racing horse ex-
ample in Figure 5. In this example, the tail of horse is seg-
mented into three partitions due to the deformation of tail
in the animation sequence as shown in Figure 7. In contrast
to our algorithm, both [15,16] consider the shape property
such as concavity rather than deformation information. Both
[15,16] do not segment the horse tail into three components,
since there is no obvious concavity on the tail in Figure 5.
Therefore, it is not suitable to apply [15] and [16] for seg-
menting deforming meshes into near-rigid components. As
mentioned in Section 1, different applications require differ-
ent segmentation schemes.

Figure 6 shows an example of the experimental comparison
between [19] and our algorithm. Both algorithms segment
the same mesh of a running horse sequence used in [19].
Using the proposed algorithm, thighs, legs, and hoofs are
grouped into different partitions. These parts are separated
from the head and body part. In this animation sequence, the
movement of head and body is very similar and is differ-
ent from those of other parts. Therefore, our result is more
reasonable than that of [19] in this example. Although [19]
also use motion similarity to cluster faces, their results can
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Fig. 7 More Segmentation examples.

Fig. 6 An experimental comparison between the proposed algorithm
(right) and [17] (left) for segmenting the same mesh of a running se-
quence.

not segment meshes into near-rigid components well. More
examples can be seen in their paper [19].

Fig. 8 An experimental comparison between the proposed algorithm
(right) and [11] (left) for segmenting the same mesh of a running se-
quence.

Another comparison with [11] is shown in Figure 8. From
this example, it is very obvious to notice that both segmenta-
tion results are quite different. In the left side [11] of Figure
8, those faces in the same partition (with the same color) may
not be connected to each other. In addition, some faces in
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black color do not belong to any partition. This kind of seg-
mentation result is suitable to some applications like skin-
ning mesh [11]. However, this method may not benefit some
applications such as deformation transfer [31], since we can
not use these partitions to adjust the reference poses of source
and target meshes.

Dual Graph Feature Clustering
Generation Extraction Final Cut

Horse (16843 faces) 405(s) 181(s) 220(s)
(48 key-frame) (28 features)

Human (15000 faces) 296(s) 79(s) 333(s)
(25 key-frame) (17 features)

Dinosaur (20000 faces) 539(s) 163(s) 339(s)
(9 key-frame) (23 features)

Hand (15855 faces) 328(s) 292(s) 153(s)
(9 key-frame) (56 features)

Lion (9996 faces) 115(s) 57(s) 106(s)
(9 key-frame) (29 features)

Table 1 Timing statistics for segmentation result on animation se-
quences.

Our segmentation algorithm was implemented on Intel Pen-
tium 4 3.4GHz PC with 2.0 G Ram. Several timing statistics
for experimental results are shown in Table 1. The major
bottlenecks of the proposed algorithms are: 1) dual graph
generation, and 2) face clustering and boundary smoothing
parts. The computational complexity of these two parts is:
O(F2logF + IF 2), whereF is the number of faces in the
mesh andI is the number of iterations in the face clustering
algorithm. These two parts are involved with all-pairs short-
est path computation, therefore the computational cost in-
creases as the number of faces increases. To reduce the cost
of all-pairs shortest paths, [15,16] suggests simplifying the
meshes first, then segmenting meshes and finally propagat-
ing segmented results to the original meshes. In the future,
we plan to include this suggestion to reduce the computation
cost.

5 Deformation Transfer with Variant Poses

To demonstrate the usefulness of the algorithm, we apply
our near-rigid segmented results to the application of defor-
mation transfer with variant poses. For this application, our
algorithm first partitions the source mesh according to its an-
imation. Next, the target mesh is compatibly segmented into
the same number of partitions based on their face correspon-
dence between source and target meshes using [31]. Given a
corresponding partition pair in Figure 9, and the face corre-
spondence is known between these two corresponding par-
titions. Therefore, the corresponding normal vectors of each
pair faces are known, too. Then, we can apply [3] to compute
a rigid transformation that can be used to transform these
normal vectors in the target partition to the corresponding
normal vectors in the source partition as close as possible.

Fig. 9 Rigid transformation can adjust the orientation of the target par-
tition to be similar to the source partition.

For each pair partitions, we compute a rigid transformation
for them. Each rigid transformation is used to adjust the ori-
entation of each target partition to that of the corresponding
source partition in the reference poses. Therefore, when our
algorithm transfers the deformation of a source face to the
target face, we do not only consider the deformation gradi-
ent of the face, but also consider the rigid transformation of
its belonged partition. In Eq. (9), we reformulate Eq. (7) in
[31] to solve the restriction of deformation transfer for tri-
angle meshes in [31] which requires similar reference poses
between source mesh and target mesh.

min
T1+d1...TT+dT

|M|

∑
j=1

‖ Pt j ×Ss j−Tt j ‖2
F

subject toTjv j +d j = Tkvi +dk,∀i,∀ j,k∈ p(vi) (9)

wherePt j is the rigid transformation of the partition which
face j belongs.

Since our algorithm can segment meshes into near-rigid com-
ponents well, we can find good rigid transformations for
them. As a result, we can obviously see that the results with
rigid transformations are better than those simply obtained
by [31] as shown in Figure 10 and 12. From these two fig-
ures, our results look quite good, although there are some
minor artifacts. For example, the hoofs of the camel are un-
naturally deformed in the bottom row of Figure 10. This is
because the segmentation does not select the hoofs as sepa-
rate components.

6 Conclusions and Future Work

This paper presents an automatic approach to segment a de-
forming mesh into near-rigid components. In addition, the
application of deformation transfer with variant poses is used
to demonstrate the usefulness of the algorithm. There are
several future works to be explored soon. First, we would
like to reduce our computation cost by the method suggested
in [15,16]. Second, the memory requirement of the all-pairs
shortest path is a significant limitation and drawback of the
proposed algorithm. We plan to investigate a new method
without the requirement of the all-pairs shortest path. Third,
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Fig. 10 (a) and (b) show that deformation transfer from horse to camel. However, the retargeted animation is crashed in (c) due to different
reference poses. More reasonable results are obtained by our algorithm in (d).

the purpose of our algorithm is to partition a deforming mesh
into near-rigid components. However, to segment a mesh
which has large deformation everywhere such as an example
from [31] in Figure 11, the partitioned results using our al-
gorithm can be over-segmented as shown in the right side of
Figure 11. Although these partitions look over-segmented,
there is still no big problem to apply these segmented results
to the application in this paper. In the future, we are seeking
a better approach to handle such the highly deformed cases.
Finally, we will apply our approach to other important ap-
plications such as LOD of animation and collision detection
for deforming meshes [11].

Fig. 11 The over-segmented result because that the mesh has large
deformation everywhere.

Acknowledgements The authors give their sincere thanks to anony-
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31. Sumner, R.W., Popović, J.: Deformation transfer for triangle
meshes. ACM Trans. Graph.23(3), 399–405 (2004). DOI
http://doi.acm.org/10.1145/1015706.1015736

32. Zayer, R., R̈ossl, C., Karni, Z., Seidel, H.P.: Harmonic guidance
for surface deformation. In: M. Alexa, J. Marks (eds.) Computer
Graphics Forum, Proceedings of Eurographics 2005, vol. 24, pp.
601–609. Eurographics, Blackwell, Dublin, Ireland (2005)
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