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Volume rendering is a technique for visualizing 3D arrays of sampled data.  Volume
rendering, though capable of performing very effective visualization, is very computationally
intensive.  Semi-boundary (SB) is a compact data structure used to encode extracted surface
from volume data.  In this paper, we describe an incremental algorithm to shorten rendering
of SB nodes.  We define two projection rules to guarantee proper projection order and, thus,
eliminate the requirement for a Z-buffer.  Using these two rules, we save data storage as well
as rendering time.  As a result, the proposed method can achieve interactive rendering per-
formance for a large volume pelvis data set with a size of 512 ¥ 512 ¥ 245.  Experimental
results show that our achieved rendering rate is less dependent on viewing angles.
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1. INTRODUCTION

Three-dimensional arrays of digital data representing spatial volumes are commonly
used in medical applications, such as sequences of two-dimensional images derived from
CT or MRI scanners.  Physicians use these images in surgical diagnosis and therapy planning.
However, the amount of data is always very large; therefore, it is inconvenient to interpret
it.  Several compact storage mechanisms have been proposed to reduce the volume size,
such as semi-boundary (SB) [2] and run-length coding [1].  Volume rendering techniques
have been used to visualize 3D volume data to aid understanding.  Generally, volume ren-
dering methods can be categorized as either indirect or direct volume rendering methods.
The former methods first convert 3D scalar or vector data into geometric primitives and
then render them using the traditional graphics pipeline.  The later directly utilize the origi-
nal data points in the final rendering of the data.

Direct volume rendering can generate high quality images, but it is very
computationally intensive.  In the past, many methods have been proposed to reduce its
computational cost [1-3, 7-9].  Many techniques have been proposed to accelerate volume
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rendering in the image order, such as ray casting [5], and in the object order, such as splatting
[6].  Several special data structures, such as Octree [11] and K-d tree [12], have been pro-
posed to quickly skip empty regions.  These special data structures, although capable of
accelerating volume rendering, complicate the innermost loop of rendering with special
data traversal code and potentially reduce the benefit of time savings.  On the other hand,
the encoding of empty space significantly reduces rendering computation as well as volume
storage.  Lacroute et al. proposed a very efficient scheme, called shear-warp [1], that pre-
cisely skips empty space using run-length encoding.  This method transforms volume data
into sheared-object space using optimization, which exploits coherence in both the volume
and the image.  However, the shear-warp scheme requires three copies of the volume data
on memory.  This constraint limits the size of the rendered volume data.  In this paper, we
adopt the semi-boundary (SB) data structure [2] to encode non-empty regions.  The draw-
back of SB rendering is that its computational complexity is in proportion to the number of
SB nodes.  The main contribution of this paper is to present an incremental algorithm to
speed up rendering of SB nodes.  As a result, we achieve interactive rendering performance
comparable to that obtained on state-of-art graphics workstations.  To further shorten the
rendering time and reduce the memory requirement, we define two rules to guarantee cor-
rect projection and a set of visibility look-up tables to cull invisible SB nodes.

In section 2, we briefly review the SB data structure proposed in [2], describe our
two-dimensional SB data structure and introduce visibility look-up tables.  The incremental
rendering schemes and two projection rules will be presented in section 3.  Our implemen-
tation details and experimental results will be discussed in section 4.  Finally, some con-
cluding remarks and future work will be given in section 5.

2. TWO-DIMENSIONAL SEMI-BOUNDARY (SB) DATA
STRUCTURE AND VISIBILITY LOOK-UP TABLES

We adopt the SB data structure to encode extracted surface from volume data.  To
render SB nodes in an incremental manner, we organize all of the SB nodes in a two-dimen-
sional parallel linked-list data structure.  For completeness, we will briefly describe the
concept of the SB rendering algorithm.  The whole volume of data can be represented by C,
a collection of voxel elements, cs.  In [2], segmentation was done simply via a threshold to
extract object from volume data.  The SB nodes are the collection of 1-voxel cs used to
describe the surface of the object.  All SB nodes are passed to the standard graphics pipeline
to perform surface rendering.  To efficiently implement our rendering scheme, we also in-
clude a normal vector look-up table and introduce a set of visibility tables.  The normal
vector table is widely used to reduce the required storage of normal vectors of voxels.  The
neighbors of a 1-voxel c can be defined as follows:

n(c) = {dΩ for some j, 1 £ j £ 3,Ω cj - dj Ω= 1 and ci = di if i π j}.
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To further reduce the storage requirement for a SB node, we record n(c) in a neigh-

boring configuration code defined by D( ) ( ) ( ),
( )

c g d m ds
d n c

= ◊Â
Œ

 where m(d) = 20, 21, 22, 23, 24,

25, where gs is a segmentation function and it will return either, 0 or 1.  This configuration
code is denoted as m.  Later in this section, we will show how this code can be used in
combination with visibility tables to cull invisible SB nodes.

After conversion from volume data to the SB structure, the resulting SB nodes are
scattered over 3D space (not in an organized manner).  To facilitate rendering of the SB
nodes, the whole SB data structure will be organized as a two-dimensional (M  by  N) linked
list (as shown in Fig. 1) in this paper.  We can imagine that there are M by N virtual rays
(originating from the YZ plane) cast along the X-axis.  Each virtual ray (linked list) is a
collection of SB nodes located on this ray.  In Fig. 1, P[i][ j] is the starting SB node on each
linked-list.  Each SB node contains the following information: d is the distance between it
and the starting SB node, m is its neighboring configuration code, n is an index to the
normal vector table, and a link is a pointer to the next SB node in the same linked list.
If P[i][ j] is null , this list will be skipped when rendering computation is performed.  We
will show later how use of this arrangement can facilitate rendering of SB nodes in an
incremental manner.

Fig. 1. Two-dimensional SB (Semi-Boundary) data structure.

For any given viewing orientation, we can determine whether an SB node is poten-
tially visible or not based upon its neighboring code.  Similar to back-face culling, in general,
a half number of SB nodes can be eliminated via this visible testing.  For this purpose, we
create a set of visibility look-up tables.  The visibility of an SB node is tested as follows.  For
a 1-voxel SB node c, D is the down facet of c, T is the top facet, L is the left facet, R is the
right facet, B is the back facet, and F is the front facet (as shown in Fig. 2).  One of the
visibility look-up tables created is shown in Table 1.  This table will be used when the
rotation angle about the Y-axis is 0 < q < 90 .  In this case (0 < q < 90), there are eight
combinations (f, rotation angle about the X-axis) for visible testing.  Similarly, the other
visibility tables for rotation about the Y-axis can be created in the same way when 90 £ q £ 360.
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3. INCREMENTAL RENDERING ALGORITHM

In this paper, our main contribution is to propose an incremental algorithm to speed
up rendering of SB nodes.  As discussed in the previous section, SB nodes are organized
into two-dimensional parallel linked lists.  Based upon this arrangement, we can render SB
nodes in an incremental manner.  Our method derives from the intuitive fact that the parallel
lines are still parallel after a parallel projection transform.  Note that our method does not

Table 1. Visible facet table for 0 < qqqqq < 90 (Y-axis).

f Visible facet

0 L,B

0~90 L,T,B

90 T

90~180 T.F.R

180 F,R

180~270 D,F,R

270 D

270~360 D,L,B

When the rotation angle (q) about the Y-axis is 0 < q < 90, there are eight combinations
(f, the rotation angle about the X-axis) for visible testing.
D: down, T:top, L:left, R:right, B:back, F:front

Fig. 2. Label of the six facets of each SB node.

In total, eight neighboring tables are created.  Using these tables, if the visible facets of an
SB node, say c, are linked to other voxels, then c is not visible.  Therefore, only un-culled
SB nodes will be further used to perform the rendering process.
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Fig. 3. If g = 0, no rotation required for the image plane.

work correctly for the perspective projection.  However, for medical applications, the im-
age is always viewed via a parallel projection.  Therefore, the proposed scheme is still very
promising in medical applications.  The scheme is described as follows:

As shown in Fig. 3, let X', Y', and Z' be axes for reference frame O, where its origin is
located at the center of the volume data, and the world reference frame W is defined by the
X, Y and Z axes.  The volume data is parallel projected into an image plane that is on W’s XY
plane.  Viewing an object in any orientation can be achieved through a sequence of rotations.
We find these three rotation angles regarding the reference frame O’s X',Y' and Z' axes, say
the angles a about the X' axis, b about the Y' axis, and g about the Z' axis, respectively.  In the
proposed scheme, the image projection plane is on the X-Y plane, and the link-list orienta-
tion of the SB data structure is created along the X-axis.  All link-lists can be thought of as
parallel lines along the X-axis.  With this arrangement, after a sequence of rotations (first
rotation about the X'-axis and second about the Y'-axis) plus a parallel projection, all the
link-lists are still parallel to the X-axis on the image plane.  This means that all the link-lists
will be projected on the scan-line of the image plane.  If only X'-axis rotation is required, it
is obvious  that the projected lines will still be parallel, and that they will also have the same
length.  However, if Y'-axis rotation is required, each parallel line has to be scaled by the
value of cos(b) as shown in Fig. 4.

When the angle g is not zero, the parallel lines in the SB are still kinds of parallel
projection onto the image plane.  However, the image plane must rotate with the same angle
g after projection to obtain correct results (illustrated in Fig. 5).  Following the above concept,
we can only project each starting node of all the link-lists on the YZ plane.  For the remain-
ing nodes in each list, we multiply each node’s depth by a constant value cos(b) to obtain its
relative offset to the starting node and thus obtain its exact location on the image plane
without the need for a parallel projection transform.  In contrast, the original SB algorithm
must perform a parallel projection for all nodes in the SB data structure.
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Next, we will show how to parallel project all SB nodes via two rules either in front-
to-back or back-to-front order. In this procedure, we do not require that the Z-buffer deter-
mine the hidden surface removal (i.e., it is storage efficient).  Furthermore, we can save time
in both storage access and depth computation (i.e., without computing and comparing the Z
value).  The shear warp algorithm [1] needs three copies of volume data to make sure that
its algorithm is projected in front-to-back order.  This requirement will greatly limit its
usefulness for a large data set.  To make sure parallel projection is in front-to-back or back-
to-front order, we define two rules in our implementation.  Rule R1 guarantees front-to-back
projection and rule R2 insures back-to-front projection.

Fig. 5. If g π 0, then rotate the image plane after projection.

Fig. 4. If b π 0, the length of the link-list is scaled by cosb.
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R1: The original projective sequence, identical to the disk storage sequence, cannot guaran-
tee front-to-back projection.  The coordinates of points A', B', C', and D' are (Z'min,Y'min) ,
(Z'max,Y'min) , ( Z'min, Y'max) , and (Z'max,Y'max).  Z'min, Z'max, Y'min, and Y'max are the
minimum and maximum coordinates of the Z' axis and the Y' axis of all SB nodes.  A, B, C
and D are the points after rotation.  Point F is a point selected from A, B, C and D whose Z-
coordinate is a minimum.  S is a point selected from A, B, C and D whose Z-coordinate is a
minimum except for point F.  If point F is point C as shown in Fig. 6, and if point S is point
A, then the new projective sequence (from C' to A') is front-to-back projection when 0 £ b £
180.

R2: In R1, if point F is the point selected from A, B, C and D whose Z coordinate is a
maximum, and if point S is the point selected from A, B, C, and D whose Z coordinate is a
maximum except for point F, then the new projective sequence is back-to-front projection
when 180 <b <  360.

The scan-line number and starting position of each linked-list can be decided without
a rotation matrix.  Next, we will describe how to obtain these values using an incremental
algorithm, also.  Let X', Y', and Z' be the coordinates of objects, and let X, Y, and Z be the
coordinates after rotation. m1 ~ m9 are the elements of the rotation matrix:
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The X' coordinate of the starting position of each link-list is a C constant, so (1) can be
written as (2)
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Fig. 6. Front-to-back or back-to-front projection.
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To fill in some details, a pseudo-code version of the proposed algorithm is listed
below (Fig. 8 on next page):

In the above procedure, Part I sets up all the initial parameters and all the related
lookup tables.  Part II checks the visibility of each SB node, Part III-A performs parallel
projection, III-B does incremental rendering, and Part IV performs phong shading.

4. IMPLEMENTATION DETAILS AND EXPERIMENTAL RESULTS

We implemented both SB and our proposed algorithm on a SUN SPARC station-20
with 64M memory, and evaluated their performance in rendering of a 512 ¥ 512 ¥ 245
pelvis volume data for an image resolution of 512 ¥ 512.  The primary sources of the overheads
in both algorithms can be organized in the four categories [10] listed below:

Fig. 7. Determining the scan-line number and starting position using an incremental algorithm.

X = m2 *  Y'  + m3 *  Z' + C *  m1, (3)

Y = m5 *  Y'  + m6 *  Z' + C *  m4. (4)

Y' or Z' is the index of the inner loop or outer loop, depending on the projection sequence.
Therefore, DX can be determined by m2 or m3 ,and DY can be determined by m5 or m6.  For
a given linked list S1, the starting position and scan-line number are known in advance.  On
the basis of S1, the starting position and scan-line number for the neighboring linked list S2
can be decided using an incremental method as shown in Fig. 7 and equations (3) and (4).
The projection point of S3 can be decided by S2.  The exact image position of each node is
the nearest integer.

p1,p2 and p3 are the projected points of SB nodes S1, S2 and S3, respectively, where p2=p1 +(DX,

DY), p3=p2 + (DX, DY), DX can be determined by m2 or m3, and DY can be determined by Dm5  or
Dm6.

Starting nodes of SB in Y-Z plane Image Space in X-Y plane
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Fig. 8. Pseudo-code of the proposed rendering algorithm.

Procedure for an incremental SB rendering algorithm;
begin
//
//Part I: initialize parameters and lookup tables
//

//obtain image viewing transform configuration
spin=trans->spin; tilt=trans->tilt;
cosx=trans->cosx;cosy=trans->cosy;
sinx=trans->sinx; siny=trains->siny;
// initialize lookup tables
Set Normal Lookup( );
SetVisibill Lookup( );
decide_projection_sequence( ); /** use rule R1 or R2 to determine projection order **/
for i: = Z’min to Z’max do begin

for j:= Y’ max to Y’min do begin
cur = &sb[i][j];

//
// part III-A: for each linked list, compute the position
// of starting SB node via a parallel projection and also
// decide the projected scan-line number of each linked-list
//

X1=X1
old

 + DX;
Y = Y

old
+DY;

while (curl=NULL)
{

//
// Part II: Visibility culling via look-up tables
//
if this SB node is visible under current viewing orientation
do begin
//
// Part III-B: computation other nodes along each linked-list
// in an incremental manner.
//

X=X1 + cur->depth*cosy;
//
// Part IV: do phong shading
//

perform phong shading of a current SB node;
}// end of while

cur:=next link-list node;
end;// end of j

end;// end of i

if r π 0 do image rotation;
end;//end of procedure
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1. Looping: This includes overheads spent on control overheads such as updating loop
counters, advancing pointers and traveling the linked-list structure.  The method of memory
access to data is crucial for determining this overhead [1,10].

2. Neighboring configuration tests: This is time spent on checking the visibility of SB nodes.
3. Parallel projection transformation: This is time spent on parallel projection.  For SB

rendering, this task is the most time-consuming part of Part III A compared with the other
overheads.  On the other hand, in our proposed method, we perform III A only for the
starting SB nodes and perform III B for the remaining un-culled nodes.

4. Z-buffering and shading: This is time spent on hidden-surface removal and shading of the
SB nodes.  In our proposed method, the hidden surface removal is replaced by front-to-
back or back-to-front projection.  Compared with the SB rendering, no Z value compari-
son is required in our proposed method.

The other miscellaneous overheads, such as lookup table initializations (about 2~3
milliseconds), are less significant than the above listed overheads.  From our experiments,
the rendering time needed by SB and our proposed method is 1567 and 716 milliseconds,
respectively.  These results are the average of rendering 180 consecutive frames (1 frame
per 2 degrees of rotation).  The rotation axis was set on the Y-axis.  The proposed incremen-
tal algorithm is faster than the original SB algorithm by a factor of 2.19 times.  Visibility
culling will improve rendering performance.  Therefore, to fairly compare our method with
the original SB scheme, both methods included visibility look-up tables in our comparison
study.  To further analyze the performance difference, a breakdown of the total execution
time for SB and our method is shown in Tables 2 and 3.  Both tables show the exact timings
and the percentages of the total execution time for each category of overheads.

Table 3. Detailed timing break-downs for the new rendering algorithm.

new algorithm Timing Percentage

Looping 324 45%

Visibility culling   68 10%

Part III A and B 172 24%

Shading and front-  152 21%
to-back or back-to-

front projection

Table 2.  Detailed timing breakdowns for the SB algorithm.

SB algorithm Timing Percentage

Looping 324 21%

Visibility culling   68   4%

Part III A only 947 60%

Z-buffering and Shading 228 15%
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From these two tables, we can see clearly that Part III is significantly improved by
our incremental algorithm, which is about 5.5 times faster.  Similarly, front-to-back or
back-to-front projection is better than Z-buffer.  In both tables, the percentage results show
that the the overheads are incurred in Part III.  Some future work can be done to improve the
performance of other time killers, such as looping.

The rendering time depends on the viewing angle while the number of the SB nodes
culled in Part II may vary with the viewpoints.  Fig. 9 shows the rendering time versus the
viewing angle for our algorithm.  Recall that un-culled SB nodes will be executed in Part III
and, thus, will make difference in rendering time.  In this figure, we see some variation in
the rendering time as the rotation angle increases.  To verify our claim (i.e., that variations
are mainly due to the number of un-culled SB nodes), we plot in Fig. 10 the un-culled SB
nodes executed by the proposed algorithm.  Referring to both Figs.9 and 10, we see clearly
that the variations in both figures are similar.  Finally, we present one frame of our rendered
results for pelvis data in Fig. 11.
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Fig. 9. Rendering time for the proposed rendering algorithm.
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Fig. 11. A rendering image of a pelvis (data set: 512×512×245).

Fig. 10. The number of un-culled SB nodes versus different viewing angles.
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5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an incremental SB rendering technique.  This scheme
can achieve interactive performance in rendering large volume data, such as 512 ¥ 512 ¥ 245
pelvis data.  The incremental algorithm accelerates the computation of parallel projection.
We use two simple rules, R1 and R2, to determine the order of projection and thus reduce the
hidden surface time.  As a results, no Z buffer is required to perform hidden surface removal.
We have experimentally analyzed our algorithm.  The algorithm performed better than the
original SB algorithm on our pelvis data.  Much future work will be done as follows.  We
plan to enhance our scheme with morphing technology to perform surgical simulation for
the pelvis system.  Some user-friendly manipulation tools will also be developed soon.
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