
Interactive voxel surface rendering in medical applications

T.-Y. Lee1,* , T.-L. Weng, C.-H. Lin, Y.-N. Sun

Visual System Laboratory, Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan, ROC

Received 19 March 1999; accepted 19 May 1999

Abstract

Semi-boundary (SB) data structure is a compact voxel surface representation of the structure from the medical images. It represents only
the boundary of the extracted structure and only an opaque object boundary involved in a 3D dataset can be visualized. Its computational
complexity is in proportion to the number of SB voxels. In this paper, we propose schemes to reduce the number of projections in two ways.
First, in conjunction with neighboring code, we exploit a set of visibility tables to cull some of the invisible SB voxels. Second, we exploit
three pass rotations and an incremental approach to quickly determine the projection position for each SB voxel during rendering. With these
two combinations, we significantly improve SB rendering performance. As a result, we can achieve an interactive rendering speed on general
purpose workstations for our medical applications.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Volume data are available from many kinds of sources,
for example, scanned by MRI (Magnetic Resonance
Imaging) or CT (Computed Tomography), or simulated by
CFD (Computational Fluid Dynamics) programs. Visualiza-
tion is a powerful technique to enable us to view 3D struc-
ture from these images. There are two main approaches in
visualization: surface and volume rendering. The former
represents the 3D structure of images in various forms
such as voxel, surface, polygon and so forth. On the other
hand, the latter does not compute an explicit model of the
structure but is able to directly view volume as a semi-
transparent cloudy material. Generally, volume rendering
techniques are both compute and storage intensive while
they produce high quality images. In the past, there has
been considerable work done in overcoming these two
issues [1–4].

Udupa et al. invented a semi-boundary (SB) data
structure that enables interactive rendering and flexible
manipulations [2]. The SB data structure only includes
those voxels on the boundary of objects. So, it saves
space. In contrast to the commonly used ray-casting para-
digm, it uses voxel projection during rendering. Therefore,

it eliminates the need for rendering-time interpolation and
thus it is fast. This approach is quite similar to splatting [5].
However, there is no voxel composite in SB approach. In
words, it cannot allow a voxel with transparent density.
Additionally, the SB only performs projection for voxels
on the boundary of objects instead of all voxels (i.e. spat-
ting). Therefore, the SB is reasonably faster than splatting.
But, the SB splats voxels with no filter kernel and thus
reduces image quality. In the past, Hanrahan and Laur [3],
and Muller and Yagel [4] proposed schemes to reduce the
number of voxels to be splatted. Later, Udupa et al. modified
SB structure and termed it as a new name,Shell [6]. The
shell allows voxel composite and thus transparent object
rendition is allowed.

The SB rendering performs voxel projection and uses
Z-buffer to resolve visibility. Its computational complexity
is in proportion to the number of SB voxels. In this paper,
we propose schemes to improve the original SB rendering in
the following respects. We exploit the use of neighboring
code in conjunction with the proposed visibility tables to
remove some of the invisible voxels, thereby reducing the
number of voxels drawn to the screen. The three pass rota-
tions and an incremental algorithm are presented to quickly
determine the projection position for each voxel during
rendering. In this paper, the SB voxels are projected in the
far-to-nearorder eliminating the need for Z-buffer. The SB
has an inherent aliasing problem (i.e. gaps or holes). To
resolve it, we use a low-cost 2D filter to post-process the
rendered image. Finally, a simplematting scheme is
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exploited to merge multiple objects and thus the proposed
design also can be used to apply different levels of translu-
cency to different objects.

In Section 2, we describe data structure to store SB voxels
and introduce visibility tables. The schemes proposed to
determine SB projections quickly are presented in Section
3. Our experimental results will be discussed in Section 4.
Finally, some concluding remark and future work is given in
Section 5.

2. Data structure and visibility tables

For a N × N × N volume data, V�0…N2 1;0…N2
1; 0…N2 1� let p andq be two distinct voxels with coordi-
nates�px;py;pz� and�qx; qy;qz�; respectively. Then,p andq
are 6-adjacent if upx 2 qxu 1 upy 2 qyu 1 upz 2 qzu � 1.
Selecting a binary segmentation function (a threshold, for
example), each voxel is classified either as a 0-voxelor as a
1-voxel. The union (denoted asC) of all 1-voxelsrepresents
the structure we wish to visualize, manipulate, and analyze.
Instead of handling all 1-voxels, Udupa et al. introduced a
semi-boundary (SB) voxels defined as follows. In this
method, the neighbors of a voxel are all its 6-adjacent
neighbors. For a 1-voxel, sayci, if it has at least a 0-voxel
neighbor, thenci will be termed as a SB voxel. The union of
all SB voxels is denoted asS. It can be shown thatSandC is
equivalent [2], the advantage being that typicallyS can be
represented more compactly (i.e. save space) in the compu-
ter thanC.

To cull invisible SB voxels, Udupa et al. proposed a 6-bit
number that encode segmented information (i.e. 1: 1-voxel
or 0: 0-voxel) for all its 6-adjacentneighbors. This 6-bit
number is called the neighboring code of a SB voxel. Addi-
tionally, in our implementation, we pre-compute the normal
of each SB voxel and encode the normal as an index,n, to
the normal vector look-up table [7]. In this manner, we can
save more space to store SB voxels.

Conceptually, all SB voxels are organized as a two-
dimensional�M × N� linked lists. In words, this structure
represents that there areM by N virtual rays (originating
from theYZ plane) cast along theX-axis. For each virtual
ray (linked list), it is a collection of SB nodes located on this
ray. In this structure, theP�i��j� is a dummy node and termed
as the origin of each ray (i.e. linked-list). It records the
number of SB nodes located on this list, and it contains a
pointer to the first SB node along the ray. Each SB node
contains the following information:d is thedistancefrom
the originP�i��j�, m is its neighboring code,n is an index to
the normal vector table, and alink is a pointer to the next SB
node in the same linked list. In implementation, we would
like to build this data structure with an array of pointers and
an array of SB voxels as shown in Fig. 1. In this structure,
each element of the pointer array, sayP�i��j�, contains a
pointer to the first SB node stored in the SB voxel array,
and the number of SB voxels along the same virtual ray. In
this manner, the SB nodes are stored in continuous memory
locations and then can be drawn in storage order during
rendering. Therefore, it potentially reduces memory access
overhead. To the contrast of this approach, the main disad-
vantages of ray casters is that they do not access the volume
in storage order since viewing rays may traverse the volume
in an arbitrary order.

During rendering, a SB node, sayci, is potentially visible
if any of its six facets facing the viewing direction are not
blocked by 1-voxelsthat are 6-adajacentto ci. Recall that
neighboring code is a 6-bit number to encode segmented
information (i.e. 1: 1-voxelor 0: 0-voxel) for all its 6-adja-
centneighbors. To quickly determine whether a SB voxel is
potentially visible, we create a set of visibility look-up
tables in conjunction with the neighboring code. The visi-
bility of a SB node is tested as follows. The six faces of a SB
node and the image coordinate system are illustrated in Fig.
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Fig. 1. SB (Semi-Boundary) data structure.

Fig. 2. The six faces of each SB node and image coordinate system.

Table 1
One visibility look-up table used for 0, u , 908 and 0# f # 3608.
(Note: D: down; T: top; L: left; R: right; B: back; F: front)

f (degree) Visible face

0 L,B
0 , 90 L,T,B
90 T
90 , 180 T,F,R
180 F,R
180, 270 D,F,R
270 D
270, 360 D,L,B



2. For example, the down face is termed as D, and the top
face is termed as T, respectively. The image plane is fixed at
the X–Y plane. Therefore, to achieve a given viewing
orientation, we can first rotate SB nodes along theX- and
the Y-axis in turn, project SB nodes and then rotate the
image plane along theZ-axis. In other words, we do not
need to consider rotation along theZ-axis during visibility
test. One of the visibility look-up tables created is shown in
Table 1. This table will be used when the rotation angleu
about theY-axis (i.e. clockwise) is between 0 and 908. In this
case�0 , u , 908�, there are eight combinations (f , rota-
tion angle about theX-axis in a clockwise direction) for
visibility test. For example, if 0, f , 908, the visible
faces of a SB node, sayci, are L, T and B, respectively. If
the corresponding bits ofci’s 6-bit number in L, T, and B are
all 1s, thenci is determined to be invisible from the current
viewing orientation. Similarly, the other visibility tables for
rotation about theY-axis can be created in the same way for
90 # u # 360. In total, there are eight look-up tables
required. Notice that in their original SB paper [2], Udupa
et al. mentioned look-up tables, too: however, there are no
details about them.

3. Quick determination of SB projections

3.1. Three pass rotations

Like the original SB paper [2], we perform voxel

orthographic projection to render SB nodes in this paper.
The coordinate systems used in this paper are shown in Fig.
3. The axes of object (volume) coordinates are labeledX, Y
andZ. The axes of image coordinates are labeledX0, Y0 and
Z0, and its origin is located at the center of the volume
coordinate system. To render an image for a given view,
we can achieve it as follows. First, we rotate object (i.e. SB
voxels) about theX0-axis bya degree and then about theY0-
axis byb degree. Second, we project transformed object on
the image plane (i.e. theX0–Y0 plane). Finally, we rotate
image plane about theZ0-axis by g degree to obtain the
correct rendered image. Recall that each linked list of SB
nodes is thought as a virtual ray cast along theX-axis. In
words, all lists are parallel lines along theX-axis. For the
first rotation (i.e. about theX0-axis), all parallel lines will be
still parallel and also preserve their length after the projec-
tion. However, after the second rotation (i.e. about theY0-
axis), they do not preserve length after projection, and their
length will be scaled by a factor of cos(b ) as shown in Fig.
4.

When the angleg is not zero, we perform the third rota-
tion of the image plane about theZ0-axis to obtain a correct
result (illustrated in Fig. 5). Based upon the above ration-
ality, it is only required to project the origins (i.e.P�i��j�s) of
all lists rather than all SB voxels. For the remaining SB
nodes on each list, we multiply each node’sd value (i.e.
distance from the origin by a factor of cos(b ) plus the
projected location of the origin to obtain their exact
projected location. In contrast, the original SB algorithm
must compute parallel projection for all SB nodes. Next,
we will show an incremental approach to further reduce
the number of origin projections.

3.2. Incremental calculation of projection

Three coordinates of a SB node,�X;Y;Z� are transformed
into the image system coordinates�X 0;Y 0;Z 0� by a rotation
matrix M. Them1 , m9 are elements of the rotation matrix
M:

X 0

Y0

Z 0

2664
3775 �

m1 m2 m3

m2 m5 m6

m7 m8 m9

2664
3775

X

Y

Z

2664
3775 �1�

The SB nodes are virtually organized as parallel rays origi-
nating from the YZ plane. The X coordinate of each origin
P�i��j� is zero, so (1) can be written as (2) for each origin

X 0

Y0

Z 0

2664
3775 �

m1 m2 m3

m2 m5 m6

m7 m8 m9

2664
3775

0

Y

Z

2664
3775 �2�

X 0 � m2Y 1 m3Z

Y 0 � m5Y 1 m6Z:
�3�

For the origins of two nearby parallel lists, we know that
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DY ± DZ and their value is either 0 or 1. This implies that
DX 0 is eitherm2 or m3, andDY0 is eitherm5 or m6. During
rendering, we can select a list, sayS1, and compute the
projection of its origin using Eq. (1). On the basis ofS1,
the origin of the neighboring listS2 can be simply calculated
by two additions as shown in Fig. 6. In this manner, the
projection of the origin forS3 can be decided byS2, incre-
mentally.

3.3. Visibility solving

The Z-buffer can be exploited to resolve visibility. For all
SB voxels, we can draw them on the screen in thefar-to
nearorder and thus eliminate the need for a Z-buffer. Recall
that we perform two pass rotations (i.e.a andb about the
X0- and theY0-axis of image coordinate system) before
projection. After these two rotations, the local object

coordinate system, labeled byx, y, andz-axis, will be trans-
formed. Then, thefar-to-near project order can be easily
determined by finding an axis, sayP, among thex, y and
z-axes, andP is most parallel to the projection direction
2Z0. For example, in Fig. 7,a � 90 andb � 0, then 1 z
and 2Z0 directions are most parallel. Therefore, we will
project SB nodes plane by plane; in words, start from
plane atz� 0 to plane at maximum1 z to achieve the
far-to-nearproject order.

4. Experimental results and discussions

We have implemented both SB and the proposed algo-
rithms on a SUN SPARC-20 workstation to evaluate and
analyze their rendering performance. The test set is a 512×
512× 245 pelvis CT data and the rendered image is at 512×
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512 resolution. The various overheads spent in both algo-
rithms are classified as follows: (1)looping: overheads spent
on data access overheads such as advancing pointers and
traveling SB voxel array; (2)culling: overheads spent on
visibility culling; (3) projection: overheads spent on draw-
ing SB nodes on the screen and (4)miscellaneous cost: such
as visibility solving, shading and so forth.

In the first experiment, the results are obtained from
rendering 180 consecutive frames, rotating object about
the Y-axis. The neighboring code in conjunction with
look-up tables and the pre-computed normals can improve
rendering performance. Therefore, to fairly compare the
proposed algorithms with the original SB scheme, both
methods will include these options in this study. On the
average, the rendering time per frame taken by the SB and
the proposed method are 1567 and 716 ms, respectively.
The proposed method is faster than the original SB by a
factor of 2.19. We can certainly achieve much better
improvement in the case of the SB scheme without visibility
culling. We should point out that there is approximately a
half number of SB voxels culled in our study. To further
understand the performance difference, a breakdown of the
total execution time for both methods is shown in Table 2.
This table shows the exact timings and the percentages for
various overheads. For the original SB, the major cost is due
to projection (about 60%). By contrast, this cost is reduced
significantly in the proposed algorithms (about 5.5 times

faster). For miscellaneous cost, since there is no Z-buffer
in the proposed scheme, it is slightly faster. In future, we
would like to shorten timing in looping for better improve-
ment. Finally, we show a rendered image of the CT pelvis
data in Fig. 8.

In contrast to ray casting, the proposed method is view
independent and its computational complexity is not in
proportion to the size of volume, but to the number of
total SB voxels. Fig. 9 shows a rendered image for another
case of study. In this study, on the average, it requires
412 ms to render an image. Fig. 10(a) and (b) both show
that there is no jump in rendering time when object is rotated
about a fixed axis in both studies. In other words, the render-
ing is view independent versus viewing angle. We should
point out that, on the average, there are 2:5 × 105 visible SB
nodes in (a) but approximately 1:4 × 105 in (b). Therefore,
the rendering cost of (a) is approximately larger than that of
(b) by a factor of two.

The facility to display multiple objects at the same frame
is a common routine in visualization. For example, we
render a MR head and a SPECT tumor simultaneously to
unveil their spatial relationship in pre-surgical planning. We
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Table 2
Detailed timing breakdowns for both schemes

Method Item Looping Culling Projection Others

SB scheme Time (ms) 324 68 947 228
Percentage 21% 4% 60% 15%

Our scheme Time(ms) 324 68 172 152
Percentage 21% 10% 24% 21%

Fig. 8. A rendered image of the pelvis data�512× 512× 245�.



exploit our packages to segment and register both data sets.
Therefore, there are two sets of SB voxels created and regis-
tered. Then, we generate an image for each set and merge
two images by a simplematting method as follows. The
color C � �R·G·Ba� at each point of a desired composite
will be a combination of the colorCf of the foreground and
colorCb of the background at the corresponding points. The
combination is simply calculated byC � Cf 1 �1 2 af �Cb.
Fig. 11 shows a snapshot of our matting GUI where the user
can interactively manipulate several parameters such as
color and opacity (i.e.a ). In this example, the MRI head
is chosen as the background image.

The image quality is essential to good visualization. In
the proposed method, there are two main aliasing effects.
The first inherently comes from the SB method; it creates
gaps and holes. The second is caused from the final image
rotation in the proposed algorithms. To reduce these defects,
we exploit a low-cost median filter on the final image. Fig.
12 shows the rendered results with various sizes of filters.
We can see there are many small gaps or holes scattered
over the image for the non-filter case. Generally, we exploit
a 3× 3 median filter in experiments, and we can obtain
acceptable image quality without sacrifice of rendering
performance. The larger filter kernel can avoid gaps easily,
but excessive overlap among neighboring pixels will blur
the image. In contrast to this approach, the splatting algo-
rithm computes the contribution of a voxel to the image by

convolving the voxel with a filter. The splatting computes
filter convolution for all voxels. However, our approach
only computes filter convolution on those pixels drawn by
visible SB voxels (i.e. it is cheaper).

Finally, we show an example of exploiting the proposed
scheme in pre-surgical planning. In this example, we
demonstrate a surgical simulation of the Chiari osteomy
as shown in Fig. 13. First, the object would be rotated to
the desired orientation so that the cutting plane is perpendi-
cular to the viewing plane. Next, a straight line inclined
about 158 above the horizontal line and at a tangent to the
top of the femoral head is drawn to determine the location
and the orientation of the cutting plane, as shown in Fig. 13
(left). Finally, the upper coxal bone is moved outward along
the plane with suitable offset to increase the cover area ratio of
the acetabulum, as shown in Fig. 13 (middle). The cut and
moved object is displayed without the femoral bone (as
shown in Fig. 13 (right)) to illustrate the final operation of
the Chiari osteomy. Both rendered image and three orthogonal
views of volume data are used to demonstrate the final results.

T.-Y. Lee et al. / Computerized Medical Imaging and Graphics 23 (1999) 193–200198

Fig. 9. Another study of rendering pelvis data�320× 270× 167�.

Fig. 11. A snapshot of themattingGUI; many parameters can be manipu-
lated. In this example, a MR head and a SPECT tumor are displayed
simultaneously.

Fig. 10. Plot of rendering time versus viewing angle for both data sets: (a) left: 512× 512× 245 and (b) right: 320× 270× 167.



5. Summary

In this paper, we present an interactive voxel surface
rendering method. We exploit the proposed algorithms in
medical applications. In this method, the object is repre-
sented by the SB data structure. The cost of drawing the
SB voxels on the screen is in proportion to the number of the
SB projections. To reduce this number, we propose three
pass rotations and an incremental approach to quickly deter-
mine the projection. Moreover, the performance can be
further improved by visibility culling. For this purpose,
we exploit neighboring code in conjunction with a set of
look-up tables. The experimental results show the proposed
algorithms perform faster than the original SB method. We
found that there is no jump in our rendering time versus
viewing angle. Furthermore, we discuss the problems in
multiple-object display and aliasing. We provide solutions
to them and illustrate real examples. Finally, we demon-
strate a surgical simulation in Chiari osteomy. The proposed
algorithms can collaborate well with other manipulative
operations such as cutting in an interactive manner. Several
studies are to be carried out in the near future. We plan to
enhance our scheme with the morphing technique to
perform surgical simulation for the pelvis system. Some
user-friendly manipulative tools will be developed. Addi-
tionally, we are collaborating with medical doctors in the
hospital of National Cheng-Kung University to design a

computer-aided surgical system that can support pre-surgi-
cal planning, surgical simulation, and provide both quanti-
tative and qualitative knowledge prior to the actual surgical
procedure.
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