
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 23, 757-771 (2007)

757

Free-Form Deformation for Point-Sampled Surface*

PING-HSIEN LIN, TONG-YEE LEE+ AND CHENG-FON LIN+

Department of Computer Science and Information Engineering
National Changhua University of Education

Changhua, 500 Taiwan
+Computer Graphics Group/Visual System Laboratory

Department of Computer Science and Information Engineering
National Cheng Kung University

Tainan, 701 Taiwan
E-mail: tonylee@mail.ncku.edu.tw

In this paper, we present a free-form deformation (FFD) approach to manipulate

point-sampled surface. Our approach provides users the powerful free-form deformation
directly on point-sampled surface. In the preprocessing, we use a robust extension of hi-
erarchical clustering scheme to partition a point-sampled model into clusters, fit a mov-
ing least square (MLS) surface to each of them, and define a valid polygonal area on the
base domain of the MLS surface. At run time, we apply the conventional free-form de-
formation technique on these clusters. While users adjust the grids of the FFD lattice, we
propose a novel interpolation method, which responses to the curvature variation during
object deformation, to curve the base domain of the MLS surfaces of those clusters con-
cerned. Finally, we resample the new base domain to produce the deformed point set
model. The proposed technique is very intuitive, effective and easy to implement. With
this technique, high frequency details from the original point-set surface can be main-
tained well on the deformed surface and several interesting deformed results of point-
sampled models are demonstrated to verify the proposed scheme.

Keywords: point-sampled models, clustering, moving least square (MLS) surface, free-
form deformation (FFD), interpolation

1. INTRODUCTION

1.1 Motivation

Since the pioneering work [1] was proposed by Levoy and Whitted, the point primi-
tives have been widely investigated in the computer graphics society. In the beginning,
the point-based research had been focused on the issues about fast and high quality ren-
dering. Recently, as the rendering techniques have become full-grown, other 3D model-
ing operations on point set models, such as shape modeling (smoothing, Boolean opera-
tions, editing, deformations), multi-resolution analysis, re-sampling, simplification, pa-
rameterization, morphing, and so on, have progressed rapidly.

Received April 1, 2005; revised July 4, 2005; accepted August 3, 2005.
Communicated by Pau-Choo Chung.
* This project was supported by the National Science Council of Taiwan, R.O.C., under contracts No. NSC-93-

2213-E-006-026, NSC-94-2213-E-006-063, NSC-94-2213-E-006-005, and NSC-94-2213-E-218-016. The
bunny, David, Lion models are courtesy of Stanford University and the Octopus and Igea models are courtesy
of ETH Zurich.

PING-HSIEN LIN, TONG-YEE LEE AND CHENG-FON LIN

758

Fig. 1. We swing the head of a point-sampled bunny model with our FFD method.

The point-based approach usually serves as a competitor with the mesh-based ap-

proach. An essential factor causes their operations so different is that the point primitives
have no local connectivity information. This feature benefits the point-based approaches
for rendering due to the straightforward hierarchical structure, as well as good for local
updating, i.e., shape modeling, without rebuilding the local connectivity. Additionally,
the point primitives can be acquired easily and naturally, such as using the range scan-
ners or the computer vision techniques to scan and reconstruct the real worlds without
the need for triangulation. However, this feature also harms the point-based approach due
to high potential risk of changing the local surface topology. For example, unpleasant
holes can potentially occur as we zoom in the surface or modify the surface without
careful processing. The success of many point-based methods relies on the local surface
smoothness requirement. Moreover, since the point primitives have no local connectivity
information, we need a huge number of samples to model the continuous surfaces, espe-
cially at the geometric features with high spatial frequency and the sharp corners. In gen-
eral, the number of points of a point set model is ranging from hundred thousands to mil-
lions, or even more. This slows down many operations on point primitives. Therefore, an
important challenge to point-based shape modeling is how to handle the huge number of
points efficiently and interactively.

Free-form shape deformations have been studied extensively in the past [2-4]. In
this paper we propose a free-form deformation technique based on the moving least
square (MLS) surface [6] and our novel interpolation scheme, to manipulate point set
models. While the users adjust the grids of the free-form deformation (FFD) [3] lattice,
we use a novel interpolation method, which is based on a circular arc, to account for the
local curvature variation during object deformation. The deformed point set model is
then generated by re-sampling the curved base domain and the MLS surfaces. Our inter-
polation method is simple and easy to be implemented, but it can generate a good surface
deformation effect. Additionally, it can generate very flexible deformation effect con-
trolled by users. In comparison with two pioneering techniques [16, 19], our approach
has some advantages. For example, in [16], this approach requires the execution of a
smoothing operator several times on the original models to obtain a smooth based model.
After this stage, it can easily compute displacement information between the original
model and a smooth based model. Then, after applying a deformation operator to the
smooth based model, this approach adds displacement, i.e., details, to obtain a deformed
model. Note that the number of points for the smooth based model and original model is
almost equal in [16]. On the other hand, our approach does not need to execute a global
smooth operation. Furthermore, we only apply deformation operation to some of original
points instead of all original points in [16]. Therefore, our approach potentially performs
efficiently than [16]. Muller’s work [19] can efficiently simulate several physical effects
like elastic, plastic and melting. However, this excellent technique is limited in physical-

FREE-FORM DEFORMATION FOR POINT-SAMPLED SURFACE

759

based domain. In contrast, our technique is more general and can create more flexible
free-form deformation (FFD) in an intuitive way. Furthermore, our approach can be eas-
ily integrated with other different deformation technique like radial basis functions or
other popular FFD techniques [2, 4].

1.2 Related Work

After Levoy and Whitted’s work [1] introduce the points as the rendering primitives,
many researchers have been involved in the area of rendering and modeling point-sam-
pled geometry. Rusinkiewicz et al. [7] and Pfister et al. [8] first develop the good ren-
dering techniques for the point primitives. Then the splatting kernels are improved by
Zwicker et al. [9] and the point rendering is accelerated by Ren et al. [10]. Kalaiah et al.
[11] further improve the rendering quality using the normal mapped rectangle that mim-
ics the local differential geometry properties.

After the point rendering techniques become matured, the shape modeling tech-
niques for point primitives have mushroomed. Pauly et al. [12] present a framework of
spectral methods for processing point-sampled objects. This framework can perform sev-
eral operations on point models, including noise removal, enhancement, restoration, and
sub-sampling. Zwicher et al. [13] develop an interactive system for point-based surface
editing called Pointshop3d, which supports a variety of different interaction techniques to
alter shape and appearance of 3D point models, including cleaning, texturing, sculpting,
carving, filtering, and re-sampling. These two techniques [12, 13] only perform the shape
modeling operations based on model’s local normal displacements, and thus they cannot
generate large scale surface modeling effects. Alexa et al. [6] use the moving least square
(MLS) projection framework to smoothly approximate a point set surface locally and
introduce techniques for re-sampling the point set surfaces. Pauly et al. [5, 14] propose
the simplification and multi-resolution framework for point-sampled surfaces. These
techniques can refine or smooth out the point set surfaces with different scale levels, but
they cannot perform more flexible user controlled shape modeling operations on point
objects.

Adams et al. [15] propose an efficient technique to test the inside-outside conditions
for performing Boolean operations on point models. Pauly et al. [16] use a hybrid ge-
ometry representation, which possesses the advantages of implicit and parametric surface
models, to perform a large constrained deformations as well as Boolean operations on
point-sampled surfaces. Guo et al. [17] develop a system for haptics-based editing on
point set surfaces. They use the dynamic implicit volumetric model [18] and the mass-
spring system to perform the dynamic physics-based modeling on point-sampled objects.
Recently, Muller et al. [19] present a physical-based method, which is derived using Fi-
nite Element Method (FEM), for modeling and animating a wide spectrum of point-based
volumetric objects with material properties ranging from stiff elastic to highly plastic.

1.3 Overview

Our method contains two main stages: the preprocessing stage and the deformation
stage. In the preprocessing stage, we divide the point set models into clusters and fit a
MLS surface to each cluster. After the MLS surfaces of all clusters have been constructed,

PING-HSIEN LIN, TONG-YEE LEE AND CHENG-FON LIN

760

we define a valid polygonal area for each cluster and discard all the points of the original
point set model. In the deformation stage, we use FFD [3] to deform the cluster positions
and normals. Fig. 2 shows the process of the FFD deformation in our system. By adjust-
ing the regular grid vertices, users can control the shape deformation of an object. In Fig.
2, after several manipulations, the original bunny (Fig. 2 (a)) could be deformed into Fig.
2 (e). Other FFD-like methods such as [2, 4] or other deformation schemes such as ra-
dial-based function can be easily integrated into our approach, too. According to the de-
formed information, we re-sample the base domain and interpolate a curved base domain
of MLS surface for each cluster, and then use the MLS surface to regenerate the de-
formed point set models. These processes are illustrated in Fig. 3.

Fig. 2. The process of the free-form deformation on a point set model.

clustering construct MLS
surface

deform cluster position
and normal & resample
the deformed base
domain

regenerate the
point set using
MLS surface

final deformed
point set surface

(a) (b) (c) (d) (e) (f)

Preprocessing Deformation

Fig. 3. The procedures of our free-form deformation technique for point-sampled surface.

The remainder of this paper is organized as follows: In sections 2 and 3, we intro-

duce the preprocessing stage and deformation stage of the proposed techniques, respec-
tively. In section 4, experimental results obtained from the proposed method are demon-
strated. Finally, we give the conclusion and future work in section 5.

2. PREPROCESSING

Point-sampled models are usually composed of huge number of points. To make an
operation on such models efficiently and interactively, we attempt to downscale the
number of primitives to be handled. In our preprocessing stage, we partition the point set

FREE-FORM DEFORMATION FOR POINT-SAMPLED SURFACE

761

surface into clusters. The number of clusters is usually less than a tenth of the number of
points. Then we fit a MLS surface to each cluster and define its boundary on the base
domain of the MLS surface.

2.1 Clustering

We use a hierarchical clustering scheme [5] to partition a point set surface into clus-
ters. In Eq. (1), the surface variation σ of a point set surface P is defined by the ratio of
the minimum eigenvalue with the sum of the three eigenvalues of the P’s covariance
matrix.

0

0 1 2
()P

λ
σ

λ λ λ
=

+ +
 (1)

A point set is split if the following condition holds:

• The size of a point set surface P is larger than the user specified maximum cluster size
nmax or

• The variation σ(P) is above a maximum threshold called σmax.

(a) (b) (c) (d)

Fig. 4. Wrong clustering example. (a) Original point-based model; (b) A close view to a letter ‘G’
after the hierarchical clustering and each cluster is colored using a distinct color; (c) The
same view as (b), but a cluster consisting of unconnected parts is colored, i.e., blue; (d)
Wrong reconstructed MLS surface caused by the unconnected parts.

The splitting plane is determined by the centroid of P and the largest eigenvector of

the covariance matrix. However, in some cases, if nmax and σmax are not selected properly,
this method could produce wrong clusters consisting of unconnected parts as shown in
Fig. 4. This phenomenon causes the constructed MLS surface not to fit the original sur-
face properly. Therefore, to make the hierarchical clustering more robust, we remedy it
by the following two procedures: (1) cluster checking and (2) cluster merging. The clus-
ter checking is simply done by a region growing process. If the region growing process
can not travel all the points of a cluster, it means that these points are not connected in-
side this cluster. Then we randomly select a point that was not visited by the previous
region growing in the cluster and thereafter we restart the region growing process again
to form a new sub-cluster. After repeating the above processes several times, we can de-
termine how many unconnected parts, i.e., new sub-clusters, inside the original cluster
and the size of each sub-cluster. If the size of a sub-cluster is less than a user specified
minimum cluster size nmin, this sub-cluster will be merged to its nearest cluster. Other-

PING-HSIEN LIN, TONG-YEE LEE AND CHENG-FON LIN

762

wise, this sub-cluster will be classified to be a new cluster. Finally, for each cluster Ci,
we record its centroid ci, referred as the cluster position in the remaining of this paper,
and an enclosing sphere with a radius ri.

2.2 Cluster Boundary in the Base Domain of a MLS Surface

Now, let us assume the model is composed of |Ci| clusters. Each cluster Ci is repre-
sented by a local MLS surface [6]. For more details to implement a MLS surface, please
see [6]. Each Ci has the following information:

• cluster position: ci
• a local reference domain Hi = {x | 〈ni, x〉 − Di = 0, x ∈ R3}, ni ∈ R3, ||ni|| = 1, ni is called

cluster normal, and Di is a constant.
• a bivariate polynomial gi for the MLS surface of each cluster Ci. The base domain Hi of

this MLS surface passes through ci.
• cluster boundary (a series of lines on base domain of MLS surface).
• an enclosing sphere with a radius cri.

(a) (b)

Fig. 5. The boundary of a cluster. The black lines are the cutting planes during the hierarchical
clustering. In (b), the region is inflated by an offset as shown in a blue color.

Because we use the MLS surface to represent the surface of a cluster, we need to

define the boundary on Hi, that is valid for this local MLS surface. We use a convex hull
to define the cluster boundary. After clustering, we first project the points of a cluster Ci
onto its Hi, and find the convex hull of these projected points on Hi by a quick-hull find-
ing algorithm. The region enclosed by the convex hull is the valid region for the MLS
surface. The convex hull usually has too many edges (see the red lines in Fig. 5 (a)). This
slows down the speed to judge whether a point is within the region or not. Therefore, we
like to reduce the number of edges of this convex hull as follows. First, after finding its
convex hull, we randomly select a point on the convex hull and examine the included
angle between the two edges connecting to it. If this angle is beyond a threshold, the
point is removed from the convex hull. This procedure is repeated until all the points on
the convex hull have been visited. The red lines in Fig. 5 (b) show the modified convex
hull. Finally, we inflate this region by an offset to prevent the gaps between adjacent
clusters. This approach helps us to quickly decide whether a point is inside a cluster or
not.

FREE-FORM DEFORMATION FOR POINT-SAMPLED SURFACE

763

3. MODEL DEFORMATION

3.1 Cluster Deformation

In our current implementation, we employ a conventional free-form deformation
(FFD) technique [3] to deform models. Other free-form deformation techniques such as
[2, 4] can be easily integrated into our approach. Our approach does not directly apply
FFD to deform each sampled point. Instead, we only use FFD to re-calculate or deform
the following information for each cluster Ci: (1) its cluster position ci, and (2) its local
coordinate frame. The local coordinate frame is determined by the cluster normal ni and
the other two orthogonal vectors s and t spanning the cluster base domain Hi. After de-
formation by FFD, the local coordinate (s, t, n) is mapped to ˆˆ ˆ(, ,).s t n We use the first
fundamental form [16] at ci defined in Eq. (2) to measure the local distortion of a surface
under deformation.

2

2

ˆˆ ˆ
ˆ ˆˆ

s s t
s t t

⎡ ⎤⋅
⎢ ⎥
⋅⎣ ⎦

 (2)

The amount of distortion can be measured by taking the ratio of the two eigenvalues
of Eq. (2). This distortion measurement will be used as the criterion to split the cluster in
section 3.3. We also adjust cri to cri′ by multiplying the largest eigenvalue.

3.2 Local Surface Deformation Using Interpolation

After FFD, each cluster Ci has new position ci′, new normal ˆ
,ˆ| |

i

i
i

n
nn′ = and new base

domain Hi′ (Hi′ is spanned by îs and ˆ).it Our strategy for local surface deformation is
described as follows. First, we resample the new base domain Hi′ of a cluster uniformly
(see section 3.4). These samples can be mapped between Hi and Hi′ directly using the
coordinate transformation between (s, t) and ˆˆ(,).s t For each sample on Hi′, we deform
the new base domain Hi′ using a novel interpolation scheme, then add the corresponding
displacement from gi to get the deformed information for the sample, including position
and normal. Figs. 6 and 7 shows the idea behind our interpolation scheme in two-dimen-
sion and three-dimension respectively. In this figure, Ca is the cluster to be reconstructed.
We first construct a local angular parameterization (i.e., polar coordinates) on Ha′. For a
sample p′ on Ha′, we use its angle value to find the two neighboring clusters Cb and Cc.
The signed distances before and after deformation of cluster Cb and Cc to local base do-
main (Ha or Ha′) are db, db′, dc and dc′, respectively (in Fig. 6, these four distances are
negative). Let Δb = db′ − db and Δc = dc′ − dc. We first interpolate this value between clus-

ter Cb and Cc using

,c cb b

cb
w

θ θ
θ θ′
Δ + Δ

+Δ = where θb and θc are the included angles between

cluster projection on Ha′ and p′ as illustrated in Fig. 7 (a). This Δw′ is related to the loca-

tion,

c cb b

cb

p pw θ θ
θ θ
′ ′+
+′ = on Ha′, where pb′ and pc′ are the projection of cb′ and cc′ on Ha′.

Note that, w′ may not locate on line ac p′ ′ exactly, but it is always very close to this line.
Then we assume Ha′ is curved to become a circular arc along line ,ac p′ ′ thus we can find

PING-HSIEN LIN, TONG-YEE LEE AND CHENG-FON LIN

764

(a) Samples on clusters Ca, Cb and Cc before deformation.

(b) New sample q′ corresponding to q of cluster Ca.

Fig. 6. Local surface interpolation.

(a) (b)

Fig. 7. (a) The 3D view of our interpolation scheme for curving the base domain Ha′; (b) The pro-
file of (a) along line .ac p′ ′ Note ca′ is the origin of the local coordinate.

Δp′ using a circle equation as shown in Fig. 7 (b). Finally, we map the point p′ to p′′ (on
the curved base domain) by Eq. (3).

FREE-FORM DEFORMATION FOR POINT-SAMPLED SURFACE

765

p′′ = p′ + Δp′na′ (3)

The normal of p′′ is np′′ = nor(p′′ − o′), where nor() is the vector normalization

function.
Next, the point q′ on the deformed surface corresponding to p′ is computed by add-

ing the scaled local displacement along np′′ to p′′.

ˆ| |
()

| |
a

a p
a

n
q p g p n

n ′′′ ′′= + (4)

In our method, the original points are discarded after the MLS surface of each cluster has
been constructed. All new points are generated by resampling the MLS surface (section
3.4). Therefore, the normal of a new point should be obtained from the related MLS sur-
face. Under the local coordinate (s, t, n) of Ca, we have q = (xq, yq, zq) and z = ga(x, y).
This equality can be reorganized as F(x, y, z) = z − ga(x, y) = 0. The normal of this equa-
tion at q is

(, ,) (, ,) (, ,)
(, ,) .q q q q q q q q q

q q q q
F x y z F x y z F x y z

n F x y z s t n
x y z

∂ ∂ ∂
= ∇ = + +

∂ ∂ ∂
 (5)

After deformation, the base domain is curved implicitly, thus the Eq. (5) cannot be
applied directly on Ca. Therefore, for each vertex on curved base domain, we project the
ŝ and t̂ onto the plane with normal np′′ to form a (sp′′, tp′′, np′′) coordinate. Then, using
Eq. (5) by replacing (s, t, n) with (sp′′, tp′′, np′′), we can get the normal nq′. In practice, we
won’t do the above step for each sample, because it takes a lot of computational time.
Instead, we use na′ ⋅ np′′ as a threshold to decide whether the new local coordinate should
be formed or not. If na′ ⋅ np′′ is larger than a user specified value, we just use ˆˆ ˆ(, ,)s t n
coordinate to compute nq.

3.3 Cluster Splitting

As mentioned above, we use the ratio of the two eigenvalues of Eq. (2) to measure
the stretch of each cluster. If this ratio of a cluster is larger than a user specified value, it
means the local deformation of this cluster is extreme and its local coordinate and en-
closing sphere radius cri will become inaccurate. Therefore, this cluster will be split into
two clusters at the ci along the eigenvector corresponding to the largest eigenvalue. The
boundaries of these two new clusters are defined by using the boundary of the original
cluster and this splitting plane. The MLS surface of the new clusters can be obtained eas-
ily by translating the local coordinates on the base domain (s′, t′).

3.4 Re-sampling and Rendering

In our approach, the original points of each cluster are discarded after the MLS sur-
face has been constructed. The new point set surface is generated by re-sampling the de-
formed base domain and the interpolation scheme mentioned in section 3.2. Based on our
interpolation scheme, we can resample the deformed base domain dynamically while

PING-HSIEN LIN, TONG-YEE LEE AND CHENG-FON LIN

766

rendering. However this strategy slows down the rendering speed dramatically. Instead,
we first resample the deformed base plane densely by a user specified density. Then,
similar to Wand et al.’s approach [20], we randomly pick the sufficient points to be ren-
dered according to the sampling density of the current camera on the point set surface.
This sampling density can be calculated using the camera-sampling field (CSF) proposed
in our previous work [21]. Let Ai be the area of cluster Ci, and c be the camera-sampling
field of the current camera. The number of point needed to be drawn is calculated by the
ceiling function () .i ic n A⋅⎡ ⎤⎢ ⎥ This number approximates the number of samples that the
current camera samples the surface of a cluster Ci.

4. IMPLEMENTATION AND RESULTS

Our method has been implemented using the OpenGL API on a system with Pen-
tium IV 2.4GHz CPU and 1GB RAM running Windows 2000 OS. As the user manipu-
lates a lattice of control grids surrounding a given point-sampled model, the model can
be free-form deformed well. We have tested our approach on a variety of point-sampled
models. We implemented three of the most deformations of FFD: the ability to twist,
bend, and stretch/squash. Additionally, some interesting effects such as swing, inflation/
shrinking and melting were demonstrated, too. In our examples, the geometric details are
well maintained after deformation. In contrast to other approaches such as [14, 16], we
do not require a decomposition operator on models to separate low and high frequency
information before deformation. Therefore, we can save computational cost significantly.
Our approach provides users the powerful free-form deformation directly on point-sam-
pled surface. A digital video clip of examples presented in this paper can be found on this
Web site: http://graphics.csie.ncku.edu.tw/FFD/FFD_demo.mp4. In Fig. 1, we demon-
strate a local deformation, i.e., swinging the head of the model of the Stanford bunny
(originally 168,900 points) whose head is rotating about a fixed axis. We can see that
bunny’s skin and ears follow the movements dynamically. In this example, the surface of
the deformed bunny model still retains the details, i.e., the fur, the nose and the details of
the bunny ears and feet, which are similar to those on the original model surface. Fig. 8
(a) shows a global deformation example, i.e., shrinking and inflating a rabbit model
(originally 60,002 points). Fig. 8 (b) is an interesting example of animating eight feet of a
detailed Octopus model (originally 791,992 points) and this example includes a close
view to the shapes of suckers on the feet that is still maintained well after a local defor-
mation on them. In Fig. 8 (c), the bunny model acts like a soft elastic model that is
gradually melting to the ground. In Fig. 8 (d), we show our CGVSL logo model (origi-
nally 104,458 points) that is bended and deformed using a wave function. In Fig. 8 (e),
Michelangelo’s David model (originally 273,097 points) is bended at large scale back-
wards and forwards, and is finally squashed into the ground. Finally, in Fig. 8 (f), we
twist, stretch and bend the Igea model (originally 297,388 points) in an animation se-
quence. For the examples in this paper, the preprocessing stages are done in few seconds
and the deformation stages can achieve interactive frame rates of between 0.8 second to
5.7 seconds on average. Fig. 9 shows a zoomed example before and after deformation to
demonstrate the quality of the proposed technique. We can see that the quality of the
deformed model is similar to the original one. Fig. 10 shows some statistical data for

FREE-FORM DEFORMATION FOR POINT-SAMPLED SURFACE

767

Fig. 8. The free-form deformation results using the proposed method.

(a) (b)

Fig. 9. A close view of (a) original point model and (b) deformed model.

PING-HSIEN LIN, TONG-YEE LEE AND CHENG-FON LIN

768

 stanford1

260000

270000
280000

290000
300000

310000

320000

330000
340000

350000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

frame

points

Stanford1

12620

12640

12660

12680

12700

12720

12740

1 3 5 7 9

11 13 15 17 19 21 23 25

frame

clusters

Fig. 10. Stanford Bunny model local deformation.

deforming the Stanford Bunny model. Note that, the label ‘points’ in this figure indicates
the number of points of the re-sampled point model using our technique. Therefore, in
frame 1, the statistical data is already different with the number of points of the original
model. In this example, it is composed of several local deformations. As you can observe,
the number of clusters increases when the deformation becomes larger. This is due to our
region splitting method to maintain the accuracy of each region’s MLS surface. Fig. 11
shows another experimental data for the deformation of the octopus model. In this exam-
ple, we can observe the similar phenomenon. In above three figures, we demonstrate the
quality, the adaptive cluster splitting and re-sampling of the proposed method. Currently,
to render our model, we use a purely software-based splatting to draw points. In future,
other hardware supported renderers such as [7] can be used to further speed up rendering
cost.

5. CONCLUSION AND FUTURE WORK

We present a free-from deformation approach to manipulate the point-set surfaces.
This technique provides users the powerful free-form deformation directly on point-
sampled surface at interactive rates. Experimental results show that this new approach

FREE-FORM DEFORMATION FOR POINT-SAMPLED SURFACE

769

 Octopus

790000
791000

792000
793000
794000

795000
796000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

frame

point

Octopus

34150
34200
34250
34300
34350
34400
34450
34500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

frame

clusters

Fig. 11. Octopus model local deformation.

successfully free-form deforms point-set models and still retains the details of the origi-
nal models. Although we currently only implement the conventional FFD technique [3],
we believe that other free-form deformation techniques can be easily integrated into our
approach. In future, we plan to design a better user interface to alleviate the cumbersome,
time-consuming manipulation of individual points in a control lattice of FFD. We will
like to implement some Boolean operations or local editing, and sculpting to enhance the
current system. In addition, we also plan to explore the possibility of applying merging
[22] or progressive approach [23] from mesh morphing to generate the metamorphosis of
point-based surface. Finally, to render NPR style of point-based surface [24] with defor-
mation will be another challenging topic to be investigated.

REFERENCES

1. M. Levoy and T. Whitted, “The use of points as a display primitive,” Technical Re-
port No. 85-022, UNC-Chapel Hill Computer Science, 1985.

2. A. H. Barr, “Global and local deformations of solid primitives,” Computer Graphics,
Vol. 18, 1984, pp. 21-30.

3. T. W. Sederberg and S. R. Parry, “Free-form deformation of solid geometric mod-

PING-HSIEN LIN, TONG-YEE LEE AND CHENG-FON LIN

770

els,” Computer Graphics, Vol. 20, 1986, pp. 151-160.
4. C. Sabine, “Extended free-form deformation: a sculpting tool for 3D geometric mod-

eling,” Computer Graphics, Vol. 2, 1990, pp. 187-196.
5. M. Pauly, M. Gross, and L. P. Kobbelt, “Efficient simplification of point-sampled

surfaces,” in Proceedings of the Conference on Visualization, 2002, pp. 163-170.
6. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, “Comput-

ing and rendering point set surfaces,” IEEE Transactions on Visualization and Com-
puter Graphics, Vol. 9, 2003, pp. 3-15.

7. S. Rusinkiewicz and M. Levoy, “Qsplat: a multiresolution point rendering system for
large meshes,” in Proceedings of SIGGRAPH, 2000, pp. 343-352.

8. H. Pfister, M. Zwicker, J. van Barn, and M. Gross, “Surfels: surface elements as ren-
dering primitives,” in Proceedings of SIGGRAPH, 2002, pp. 335-342.

9. M. Zwicker, H. Pfister, J. van Baar, and M. Gross, “Surface splatting,” in Proceed-
ings of SIGGRAPH, 2001, pp. 371-378.

10. L. Ren, H. Pfister, and M. Zwicker, “Object space EWA surface splatting: a hard-
ware accelerated approach to high quality point rendering,” in Proceedings of EU-
ROGRAPHICS, Computer Graphics Forum, Vol. 21, 2002, pp. 461-470.

11. A. Kalaiah and A. Varshney, “Modeling and rendering points with local geometry,”
IEEE Transactions on Visualization and Computer Graphics, Vol. 9, 2003, pp.
30-42.

12. M. Pauly and M. Gross, “Spectral processing of point-sampled geometry,” in Pro-
ceedings of SIGGRAPH, 2001, pp. 379-386.

13. M. Zwicker, M. Pauly, O. Knoll, and M. Gross, “Pointshop 3D: an interactive system
for point-based surface editing,” in Proceedings of SIGGRAPH, 2002, pp. 322-329.

14. M. Pauly, L. P. Kobbelt, and M. Gross, “Multiresolution modeling of point-sampled
geometry,” Technical Report No. 378, Computer Science Department, ETH Zurich,
2002.

15. B. Adams and P. Dutre, “Interactive boolean operations on surfel-bounded solids,”
in Proceedings of SIGGRAPH, 2003, pp. 651-656.

16. M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross, “Shape modeling with point-sam-
pled geometry,” in Proceedings of SIGGRAPH, Vol. 22, 2003, pp. 641-650.

17. X. Guo, J. Hua, and H. Qin, “Enhancing interactive editing on point set surfaces
through touch-based haptics,” IEEE Computer Graphics and Applications, Vol. 24,
2004, pp. 31-39.

18. J. Hua and H. Qin, “Haptics-based volumetric modeling using dynamic spline-based
implicit functions,” in Proceedings of IEEE Symposium on Volume Visualization and
Graphics, 2002, pp. 55-64.

19. M. Muller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa, “Point based
animation of elastic, plastic and melting objects,” in Proceedings of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2004, pp. 141-151.

20. M. Wand, M. Fischer, P. Ingmar, F. M. auf der Heide, and W. Straer, “The random-
ized z-buffer algorithm: Interactive rendering of highly complex scenes,” in Pro-
ceedings of SIGGRAPH, 2001, pp. 361-370.

21. P. H. Lin and T. Y. Lee, “Camera-sampling field and its applications,” IEEE Trans-
actions on Visualization and Computer Graphics, Vol. 10, 2004, pp. 241-251.

22. T. Y. Lee and P. H. Huang, “Fast and intuitive metamorphosis of 3D polyhedral

FREE-FORM DEFORMATION FOR POINT-SAMPLED SURFACE

771

models using SMCC mesh merging scheme,” IEEE Transactions on Visualization
and Computer Graphics, Vol. 9, 2003, pp. 85-98.

23. C. H. Lin and T. Y. Lee, “Metamorphosis of 3D polyhedral models using progres-
sive connectivity transformations,” IEEE Transactions on Visualization and Com-
puter Graphics, Vol. 11, 2005, pp. 2-12.

24. M. T. Chi and T. Y. Lee, “Stylized and abstract painterly rendering system using a
multi-scale segmented sphere hierarchy,” to appear in IEEE Transactions on Visu-
alization and Computer Graphics, 2006.

Ping-Hsien Lin (林炳賢) received the B.S. degree in Me-
chanical Engineering and the Ph.D. degree in Computer Engi-
neering from National Cheng Kung University, Taiwan, in 1993
and 2004, respectively. He is currently an assistant professor in
the Department of Computer Science and Information Engineer-
ing at National Changhua University of Education in Taiwan,
R.O.C. His research interests include computer graphics, com-
puter vision, and image-based rendering.

Tong-Yee Lee (李同益) was born in Tainan county, Taiwan,
Republic of China, in 1966. He received his B.S. in Computer
Engineering from Tatung Institute of Technology in Taipei, Tai-
wan, in 1988, his M.S. in Computer Engineering from National
Taiwan University in 1990, and his Ph.D. in Computer Engi-
neering from Washington State University, Pullman, in May
1995. Now, he is a Professor in the Department of Computer Sci-
ence and Information Engineering at National Cheng Kung Uni-
versity in Tainan, Taiwan, R.O.C. He serves as a guest associate
editor for IEEE Transactions on Information Technology in Bio-

medicine from 2000 to 2005. His current research interests include computer graphics,
non-photorealistic rendering, image-based rendering, visualization, virtual reality, surgi-
cal simulation, distributed & collaborative virtual environment. He leads a Computer
Graphics Group/Visual System Lab at National Cheng Kung University (http://graphics.
csie.ncku.edu.tw). He is a member of the IEEE.

Cheng-Fon Lin (林震凡) received the B.S. degree from the
Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan, in 2002, and the
M.S. degree from the Department of Computer Science and In-
formation Engineering, National Cheng Kung University, Tainan,
Taiwan, in 2004. His research interests include computer graph-
ics, computer vision, and image processing.

