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In this paper, we present a free-form deformation (FFD) approach to manipulate 

point-sampled surface. Our approach provides users the powerful free-form deformation 
directly on point-sampled surface. In the preprocessing, we use a robust extension of hi-
erarchical clustering scheme to partition a point-sampled model into clusters, fit a mov-
ing least square (MLS) surface to each of them, and define a valid polygonal area on the 
base domain of the MLS surface. At run time, we apply the conventional free-form de-
formation technique on these clusters. While users adjust the grids of the FFD lattice, we 
propose a novel interpolation method, which responses to the curvature variation during 
object deformation, to curve the base domain of the MLS surfaces of those clusters con-
cerned. Finally, we resample the new base domain to produce the deformed point set 
model. The proposed technique is very intuitive, effective and easy to implement. With 
this technique, high frequency details from the original point-set surface can be main-
tained well on the deformed surface and several interesting deformed results of point- 
sampled models are demonstrated to verify the proposed scheme. 
 
Keywords: point-sampled models, clustering, moving least square (MLS) surface, free- 
form deformation (FFD), interpolation 
 
 

1. INTRODUCTION 
 
1.1 Motivation 
 

Since the pioneering work [1] was proposed by Levoy and Whitted, the point primi-
tives have been widely investigated in the computer graphics society. In the beginning, 
the point-based research had been focused on the issues about fast and high quality ren-
dering. Recently, as the rendering techniques have become full-grown, other 3D model-
ing operations on point set models, such as shape modeling (smoothing, Boolean opera-
tions, editing, deformations), multi-resolution analysis, re-sampling, simplification, pa-
rameterization, morphing, and so on, have progressed rapidly. 
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Fig. 1. We swing the head of a point-sampled bunny model with our FFD method. 

 
The point-based approach usually serves as a competitor with the mesh-based ap-

proach. An essential factor causes their operations so different is that the point primitives 
have no local connectivity information. This feature benefits the point-based approaches 
for rendering due to the straightforward hierarchical structure, as well as good for local 
updating, i.e., shape modeling, without rebuilding the local connectivity. Additionally, 
the point primitives can be acquired easily and naturally, such as using the range scan-
ners or the computer vision techniques to scan and reconstruct the real worlds without 
the need for triangulation. However, this feature also harms the point-based approach due 
to high potential risk of changing the local surface topology. For example, unpleasant 
holes can potentially occur as we zoom in the surface or modify the surface without 
careful processing. The success of many point-based methods relies on the local surface 
smoothness requirement. Moreover, since the point primitives have no local connectivity 
information, we need a huge number of samples to model the continuous surfaces, espe-
cially at the geometric features with high spatial frequency and the sharp corners. In gen-
eral, the number of points of a point set model is ranging from hundred thousands to mil-
lions, or even more. This slows down many operations on point primitives. Therefore, an 
important challenge to point-based shape modeling is how to handle the huge number of 
points efficiently and interactively. 

Free-form shape deformations have been studied extensively in the past [2-4]. In 
this paper we propose a free-form deformation technique based on the moving least 
square (MLS) surface [6] and our novel interpolation scheme, to manipulate point set 
models. While the users adjust the grids of the free-form deformation (FFD) [3] lattice, 
we use a novel interpolation method, which is based on a circular arc, to account for the 
local curvature variation during object deformation. The deformed point set model is 
then generated by re-sampling the curved base domain and the MLS surfaces. Our inter-
polation method is simple and easy to be implemented, but it can generate a good surface 
deformation effect. Additionally, it can generate very flexible deformation effect con-
trolled by users. In comparison with two pioneering techniques [16, 19], our approach 
has some advantages. For example, in [16], this approach requires the execution of a 
smoothing operator several times on the original models to obtain a smooth based model. 
After this stage, it can easily compute displacement information between the original 
model and a smooth based model. Then, after applying a deformation operator to the 
smooth based model, this approach adds displacement, i.e., details, to obtain a deformed 
model. Note that the number of points for the smooth based model and original model is 
almost equal in [16]. On the other hand, our approach does not need to execute a global 
smooth operation. Furthermore, we only apply deformation operation to some of original 
points instead of all original points in [16]. Therefore, our approach potentially performs 
efficiently than [16]. Muller’s work [19] can efficiently simulate several physical effects 
like elastic, plastic and melting. However, this excellent technique is limited in physical- 
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based domain. In contrast, our technique is more general and can create more flexible 
free-form deformation (FFD) in an intuitive way. Furthermore, our approach can be eas-
ily integrated with other different deformation technique like radial basis functions or 
other popular FFD techniques [2, 4].  
 
1.2 Related Work 
 

After Levoy and Whitted’s work [1] introduce the points as the rendering primitives, 
many researchers have been involved in the area of rendering and modeling point-sam- 
pled geometry. Rusinkiewicz et al. [7] and Pfister et al. [8] first develop the good ren-
dering techniques for the point primitives. Then the splatting kernels are improved by 
Zwicker et al. [9] and the point rendering is accelerated by Ren et al. [10]. Kalaiah et al. 
[11] further improve the rendering quality using the normal mapped rectangle that mim-
ics the local differential geometry properties. 

After the point rendering techniques become matured, the shape modeling tech-
niques for point primitives have mushroomed. Pauly et al. [12] present a framework of 
spectral methods for processing point-sampled objects. This framework can perform sev-
eral operations on point models, including noise removal, enhancement, restoration, and 
sub-sampling. Zwicher et al. [13] develop an interactive system for point-based surface 
editing called Pointshop3d, which supports a variety of different interaction techniques to 
alter shape and appearance of 3D point models, including cleaning, texturing, sculpting, 
carving, filtering, and re-sampling. These two techniques [12, 13] only perform the shape 
modeling operations based on model’s local normal displacements, and thus they cannot 
generate large scale surface modeling effects. Alexa et al. [6] use the moving least square 
(MLS) projection framework to smoothly approximate a point set surface locally and 
introduce techniques for re-sampling the point set surfaces. Pauly et al. [5, 14] propose 
the simplification and multi-resolution framework for point-sampled surfaces. These 
techniques can refine or smooth out the point set surfaces with different scale levels, but 
they cannot perform more flexible user controlled shape modeling operations on point 
objects. 

Adams et al. [15] propose an efficient technique to test the inside-outside conditions 
for performing Boolean operations on point models. Pauly et al. [16] use a hybrid ge-
ometry representation, which possesses the advantages of implicit and parametric surface 
models, to perform a large constrained deformations as well as Boolean operations on 
point-sampled surfaces. Guo et al. [17] develop a system for haptics-based editing on 
point set surfaces. They use the dynamic implicit volumetric model [18] and the mass- 
spring system to perform the dynamic physics-based modeling on point-sampled objects. 
Recently, Muller et al. [19] present a physical-based method, which is derived using Fi-
nite Element Method (FEM), for modeling and animating a wide spectrum of point-based 
volumetric objects with material properties ranging from stiff elastic to highly plastic.  
 
1.3 Overview 
 

Our method contains two main stages: the preprocessing stage and the deformation 
stage. In the preprocessing stage, we divide the point set models into clusters and fit a 
MLS surface to each cluster. After the MLS surfaces of all clusters have been constructed, 
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we define a valid polygonal area for each cluster and discard all the points of the original 
point set model. In the deformation stage, we use FFD [3] to deform the cluster positions 
and normals. Fig. 2 shows the process of the FFD deformation in our system. By adjust-
ing the regular grid vertices, users can control the shape deformation of an object. In Fig. 
2, after several manipulations, the original bunny (Fig. 2 (a)) could be deformed into Fig. 
2 (e). Other FFD-like methods such as [2, 4] or other deformation schemes such as ra-
dial-based function can be easily integrated into our approach, too. According to the de-
formed information, we re-sample the base domain and interpolate a curved base domain 
of MLS surface for each cluster, and then use the MLS surface to regenerate the de-
formed point set models. These processes are illustrated in Fig. 3. 

 
Fig. 2. The process of the free-form deformation on a point set model. 

clustering construct MLS 
surface

deform cluster position 
and normal & resample 
the deformed base 
domain

regenerate the 
point set using 
MLS surface

final deformed 
point set surface

(a) (b) (c) (d) (e) (f)

Preprocessing Deformation

 
Fig. 3. The procedures of our free-form deformation technique for point-sampled surface. 

 
The remainder of this paper is organized as follows: In sections 2 and 3, we intro-

duce the preprocessing stage and deformation stage of the proposed techniques, respec-
tively. In section 4, experimental results obtained from the proposed method are demon-
strated. Finally, we give the conclusion and future work in section 5. 

2. PREPROCESSING 

Point-sampled models are usually composed of huge number of points. To make an 
operation on such models efficiently and interactively, we attempt to downscale the 
number of primitives to be handled. In our preprocessing stage, we partition the point set 
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surface into clusters. The number of clusters is usually less than a tenth of the number of 
points. Then we fit a MLS surface to each cluster and define its boundary on the base 
domain of the MLS surface. 
 
2.1 Clustering 
 

We use a hierarchical clustering scheme [5] to partition a point set surface into clus-
ters. In Eq. (1), the surface variation σ of a point set surface P is defined by the ratio of 
the minimum eigenvalue with the sum of the three eigenvalues of the P’s covariance 
matrix. 

0

0 1 2
( )P

λ
σ

λ λ λ
=

+ +
                                                (1) 

A point set is split if the following condition holds: 
 

• The size of a point set surface P is larger than the user specified maximum cluster size 
nmax or 

• The variation σ(P) is above a maximum threshold called σmax. 

    
(a)                  (b)                  (c)                  (d) 

Fig. 4. Wrong clustering example. (a) Original point-based model; (b) A close view to a letter ‘G’ 
after the hierarchical clustering and each cluster is colored using a distinct color; (c) The 
same view as (b), but a cluster consisting of unconnected parts is colored, i.e., blue; (d) 
Wrong reconstructed MLS surface caused by the unconnected parts. 

 
The splitting plane is determined by the centroid of P and the largest eigenvector of 

the covariance matrix. However, in some cases, if nmax and σmax are not selected properly, 
this method could produce wrong clusters consisting of unconnected parts as shown in 
Fig. 4. This phenomenon causes the constructed MLS surface not to fit the original sur-
face properly. Therefore, to make the hierarchical clustering more robust, we remedy it 
by the following two procedures: (1) cluster checking and (2) cluster merging. The clus-
ter checking is simply done by a region growing process. If the region growing process 
can not travel all the points of a cluster, it means that these points are not connected in-
side this cluster. Then we randomly select a point that was not visited by the previous 
region growing in the cluster and thereafter we restart the region growing process again 
to form a new sub-cluster. After repeating the above processes several times, we can de-
termine how many unconnected parts, i.e., new sub-clusters, inside the original cluster 
and the size of each sub-cluster. If the size of a sub-cluster is less than a user specified 
minimum cluster size nmin, this sub-cluster will be merged to its nearest cluster. Other-
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wise, this sub-cluster will be classified to be a new cluster. Finally, for each cluster Ci, 
we record its centroid ci, referred as the cluster position in the remaining of this paper, 
and an enclosing sphere with a radius ri.  
 
2.2 Cluster Boundary in the Base Domain of a MLS Surface 
 

Now, let us assume the model is composed of |Ci| clusters. Each cluster Ci is repre-
sented by a local MLS surface [6]. For more details to implement a MLS surface, please 
see [6]. Each Ci has the following information: 
 
• cluster position: ci 
• a local reference domain Hi = {x | 〈ni, x〉 − Di = 0, x ∈ R3}, ni ∈ R3, ||ni|| = 1, ni is called 

cluster normal, and Di is a constant. 
• a bivariate polynomial gi for the MLS surface of each cluster Ci. The base domain Hi of 

this MLS surface passes through ci. 
• cluster boundary (a series of lines on base domain of MLS surface). 
• an enclosing sphere with a radius cri. 

 
(a)                       (b) 

Fig. 5. The boundary of a cluster. The black lines are the cutting planes during the hierarchical 
clustering. In (b), the region is inflated by an offset as shown in a blue color. 

 
Because we use the MLS surface to represent the surface of a cluster, we need to 

define the boundary on Hi, that is valid for this local MLS surface. We use a convex hull 
to define the cluster boundary. After clustering, we first project the points of a cluster Ci 
onto its Hi, and find the convex hull of these projected points on Hi by a quick-hull find-
ing algorithm. The region enclosed by the convex hull is the valid region for the MLS 
surface. The convex hull usually has too many edges (see the red lines in Fig. 5 (a)). This 
slows down the speed to judge whether a point is within the region or not. Therefore, we 
like to reduce the number of edges of this convex hull as follows. First, after finding its 
convex hull, we randomly select a point on the convex hull and examine the included 
angle between the two edges connecting to it. If this angle is beyond a threshold, the 
point is removed from the convex hull. This procedure is repeated until all the points on 
the convex hull have been visited. The red lines in Fig. 5 (b) show the modified convex 
hull. Finally, we inflate this region by an offset to prevent the gaps between adjacent 
clusters. This approach helps us to quickly decide whether a point is inside a cluster or 
not. 
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3. MODEL DEFORMATION 

3.1 Cluster Deformation 
 

In our current implementation, we employ a conventional free-form deformation 
(FFD) technique [3] to deform models. Other free-form deformation techniques such as 
[2, 4] can be easily integrated into our approach. Our approach does not directly apply 
FFD to deform each sampled point. Instead, we only use FFD to re-calculate or deform 
the following information for each cluster Ci: (1) its cluster position ci, and (2) its local 
coordinate frame. The local coordinate frame is determined by the cluster normal ni and 
the other two orthogonal vectors s and t spanning the cluster base domain Hi. After de-
formation by FFD, the local coordinate (s, t, n) is mapped to ˆˆ ˆ( , , ).s t n  We use the first 
fundamental form [16] at ci defined in Eq. (2) to measure the local distortion of a surface 
under deformation.  

2

2

ˆˆ ˆ
ˆ ˆˆ

s s t
s t t

⎡ ⎤⋅
⎢ ⎥
⋅⎣ ⎦

                                                       (2) 

The amount of distortion can be measured by taking the ratio of the two eigenvalues 
of Eq. (2). This distortion measurement will be used as the criterion to split the cluster in 
section 3.3. We also adjust cri to cri′ by multiplying the largest eigenvalue. 
 
3.2 Local Surface Deformation Using Interpolation 
 

After FFD, each cluster Ci has new position ci′, new normal ˆ
,ˆ| |

i

i
i

n
nn′ =  and new base  

domain Hi′ (Hi′ is spanned by îs  and ˆ ).it  Our strategy for local surface deformation is 
described as follows. First, we resample the new base domain Hi′ of a cluster uniformly 
(see section 3.4). These samples can be mapped between Hi and Hi′ directly using the 
coordinate transformation between (s, t) and ˆˆ( , ).s t  For each sample on Hi′, we deform 
the new base domain Hi′ using a novel interpolation scheme, then add the corresponding 
displacement from gi to get the deformed information for the sample, including position 
and normal. Figs. 6 and 7 shows the idea behind our interpolation scheme in two-dimen- 
sion and three-dimension respectively. In this figure, Ca is the cluster to be reconstructed. 
We first construct a local angular parameterization (i.e., polar coordinates) on Ha′. For a 
sample p′ on Ha′, we use its angle value to find the two neighboring clusters Cb and Cc. 
The signed distances before and after deformation of cluster Cb and Cc to local base do-
main (Ha or Ha′) are db, db′, dc and dc′, respectively (in Fig. 6, these four distances are 
negative). Let Δb = db′ − db and Δc = dc′ − dc. We first interpolate this value between clus-  

ter Cb and Cc using  

 

 
 

,c cb b

cb
w

θ θ
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Δ + Δ

+Δ =  where θb and θc are the included angles between  

cluster projection on Ha′ and p′ as illustrated in Fig. 7 (a). This Δw′ is related to the loca-  

tion,   
  

c cb b

cb

p pw θ θ
θ θ
′ ′+
+′ =  on Ha′, where pb′ and pc′ are the projection of cb′ and cc′ on Ha′.  

Note that, w′ may not locate on line ac p′ ′  exactly, but it is always very close to this line.  
Then we assume Ha′ is curved to become a circular arc along line ,ac p′ ′  thus we can find  
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(a) Samples on clusters Ca, Cb and Cc before deformation. 

 
(b) New sample q′ corresponding to q of cluster Ca. 

Fig. 6. Local surface interpolation. 

 
(a)                                    (b) 

Fig. 7. (a) The 3D view of our interpolation scheme for curving the base domain Ha′; (b) The pro- 
file of (a) along line .ac p′ ′  Note ca′ is the origin of the local coordinate. 

 
Δp′ using a circle equation as shown in Fig. 7 (b). Finally, we map the point p′ to p′′ (on 
the curved base domain) by Eq. (3). 
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p′′ = p′ + Δp′na′                                                    (3) 
 
The normal of p′′ is np′′ = nor(p′′ − o′), where nor( ) is the vector normalization 

function. 
Next, the point q′ on the deformed surface corresponding to p′ is computed by add-

ing the scaled local displacement along np′′ to p′′. 

ˆ| |
( )

| |
a

a p
a

n
q p g p n

n ′′′ ′′= +                                               (4) 

In our method, the original points are discarded after the MLS surface of each cluster has 
been constructed. All new points are generated by resampling the MLS surface (section 
3.4). Therefore, the normal of a new point should be obtained from the related MLS sur-
face. Under the local coordinate (s, t, n) of Ca, we have q = (xq, yq, zq) and z = ga(x, y). 
This equality can be reorganized as F(x, y, z) = z − ga(x, y) = 0. The normal of this equa-
tion at q is 

( , , ) ( , , ) ( , , )
( , , ) .q q q q q q q q q

q q q q
F x y z F x y z F x y z

n F x y z s t n
x y z

∂ ∂ ∂
= ∇ = + +

∂ ∂ ∂
   (5) 

After deformation, the base domain is curved implicitly, thus the Eq. (5) cannot be 
applied directly on Ca. Therefore, for each vertex on curved base domain, we project the 
ŝ  and t̂  onto the plane with normal np′′ to form a (sp′′, tp′′, np′′) coordinate. Then, using 
Eq. (5) by replacing (s, t, n) with (sp′′, tp′′, np′′), we can get the normal nq′. In practice, we 
won’t do the above step for each sample, because it takes a lot of computational time. 
Instead, we use na′ ⋅ np′′ as a threshold to decide whether the new local coordinate should 
be formed or not. If na′ ⋅ np′′ is larger than a user specified value, we just use ˆˆ ˆ( , , )s t n  
coordinate to compute nq. 
 
3.3 Cluster Splitting 
 

As mentioned above, we use the ratio of the two eigenvalues of Eq. (2) to measure 
the stretch of each cluster. If this ratio of a cluster is larger than a user specified value, it 
means the local deformation of this cluster is extreme and its local coordinate and en-
closing sphere radius cri will become inaccurate. Therefore, this cluster will be split into 
two clusters at the ci along the eigenvector corresponding to the largest eigenvalue. The 
boundaries of these two new clusters are defined by using the boundary of the original 
cluster and this splitting plane. The MLS surface of the new clusters can be obtained eas-
ily by translating the local coordinates on the base domain (s′, t′).  
 
3.4 Re-sampling and Rendering 
 

In our approach, the original points of each cluster are discarded after the MLS sur-
face has been constructed. The new point set surface is generated by re-sampling the de-
formed base domain and the interpolation scheme mentioned in section 3.2. Based on our 
interpolation scheme, we can resample the deformed base domain dynamically while 
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rendering. However this strategy slows down the rendering speed dramatically. Instead, 
we first resample the deformed base plane densely by a user specified density. Then, 
similar to Wand et al.’s approach [20], we randomly pick the sufficient points to be ren-
dered according to the sampling density of the current camera on the point set surface. 
This sampling density can be calculated using the camera-sampling field (CSF) proposed 
in our previous work [21]. Let Ai be the area of cluster Ci, and c be the camera-sampling 
field of the current camera. The number of point needed to be drawn is calculated by the 
ceiling function ( ) .i ic n A⋅⎡ ⎤⎢ ⎥  This number approximates the number of samples that the 
current camera samples the surface of a cluster Ci. 

4. IMPLEMENTATION AND RESULTS 

Our method has been implemented using the OpenGL API on a system with Pen-
tium IV 2.4GHz CPU and 1GB RAM running Windows 2000 OS. As the user manipu-
lates a lattice of control grids surrounding a given point-sampled model, the model can 
be free-form deformed well. We have tested our approach on a variety of point-sampled 
models. We implemented three of the most deformations of FFD: the ability to twist, 
bend, and stretch/squash. Additionally, some interesting effects such as swing, inflation/ 
shrinking and melting were demonstrated, too. In our examples, the geometric details are 
well maintained after deformation. In contrast to other approaches such as [14, 16], we 
do not require a decomposition operator on models to separate low and high frequency 
information before deformation. Therefore, we can save computational cost significantly. 
Our approach provides users the powerful free-form deformation directly on point-sam- 
pled surface. A digital video clip of examples presented in this paper can be found on this 
Web site: http://graphics.csie.ncku.edu.tw/FFD/FFD_demo.mp4. In Fig. 1, we demon-
strate a local deformation, i.e., swinging the head of the model of the Stanford bunny 
(originally 168,900 points) whose head is rotating about a fixed axis. We can see that 
bunny’s skin and ears follow the movements dynamically. In this example, the surface of 
the deformed bunny model still retains the details, i.e., the fur, the nose and the details of 
the bunny ears and feet, which are similar to those on the original model surface. Fig. 8 
(a) shows a global deformation example, i.e., shrinking and inflating a rabbit model 
(originally 60,002 points). Fig. 8 (b) is an interesting example of animating eight feet of a 
detailed Octopus model (originally 791,992 points) and this example includes a close 
view to the shapes of suckers on the feet that is still maintained well after a local defor-
mation on them. In Fig. 8 (c), the bunny model acts like a soft elastic model that is 
gradually melting to the ground. In Fig. 8 (d), we show our CGVSL logo model (origi-
nally 104,458 points) that is bended and deformed using a wave function. In Fig. 8 (e), 
Michelangelo’s David model (originally 273,097 points) is bended at large scale back-
wards and forwards, and is finally squashed into the ground. Finally, in Fig. 8 (f), we 
twist, stretch and bend the Igea model (originally 297,388 points) in an animation se-
quence. For the examples in this paper, the preprocessing stages are done in few seconds 
and the deformation stages can achieve interactive frame rates of between 0.8 second to 
5.7 seconds on average. Fig. 9 shows a zoomed example before and after deformation to 
demonstrate the quality of the proposed technique. We can see that the quality of the 
deformed model is similar to the original one. Fig. 10 shows some statistical data for  
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Fig. 8. The free-form deformation results using the proposed method. 

        
(a)                           (b)  

Fig. 9. A close view of (a) original point model and (b) deformed model. 
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Fig. 10. Stanford Bunny model local deformation. 

 
deforming the Stanford Bunny model. Note that, the label ‘points’ in this figure indicates 
the number of points of the re-sampled point model using our technique. Therefore, in 
frame 1, the statistical data is already different with the number of points of the original 
model. In this example, it is composed of several local deformations. As you can observe, 
the number of clusters increases when the deformation becomes larger. This is due to our 
region splitting method to maintain the accuracy of each region’s MLS surface. Fig. 11 
shows another experimental data for the deformation of the octopus model. In this exam-
ple, we can observe the similar phenomenon. In above three figures, we demonstrate the 
quality, the adaptive cluster splitting and re-sampling of the proposed method. Currently, 
to render our model, we use a purely software-based splatting to draw points. In future, 
other hardware supported renderers such as [7] can be used to further speed up rendering 
cost. 

5. CONCLUSION AND FUTURE WORK 

We present a free-from deformation approach to manipulate the point-set surfaces. 
This technique provides users the powerful free-form deformation directly on point- 
sampled surface at interactive rates. Experimental results show that this new approach  
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Fig. 11. Octopus model local deformation. 

 
successfully free-form deforms point-set models and still retains the details of the origi-
nal models. Although we currently only implement the conventional FFD technique [3], 
we believe that other free-form deformation techniques can be easily integrated into our 
approach. In future, we plan to design a better user interface to alleviate the cumbersome, 
time-consuming manipulation of individual points in a control lattice of FFD. We will 
like to implement some Boolean operations or local editing, and sculpting to enhance the 
current system. In addition, we also plan to explore the possibility of applying merging 
[22] or progressive approach [23] from mesh morphing to generate the metamorphosis of 
point-based surface. Finally, to render NPR style of point-based surface [24] with defor-
mation will be another challenging topic to be investigated.  
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