
Fast Feature-Based Metamorphosis and Operator Design

Tong-Yee LEE1, Young-Ching LIN, Leeween LIN2, Y.N. SUN

Department of Computer Science and Information Engineering

National Cheng-Kung University Tainan, Taiwan, R.O.C

Abstract
Metamorphosis is a powerful visual technique, for producing interesting transition between two images or
volume data. Image or volume metamorphosis using simple features provides flexible and easy control of
visual effect. The feature-based image warping proposed by Beier and Neely is a brute-force approach. In
this paper, first, we propose optimization methods to reduce their warping time without noticeable loss of
image quality. Second, we extend our methods to 3D volume data and propose several interesting warping
operators allowing global and local metamorphosis of volume data.

1 Corresponding author: tonylee@mail.ncku.edu.tw
2 Institute of Computer and Information Engineering, National Sun Yat-Sen Univ., Kaohsiung, Taiwan, ROC

1. Introduction

Metamorphosis or warping technique is a powerful tool to
transform one image into another or generate new 3D
model from a given one. Using this technique, many
exciting visual effects in film and television is realized by
animating complex models and changing their physical
attributes such as shapes and positions. In general, 2D
warping can be achieved by generating 2D images from
3D metamorphosis. Levoy et al [1] discuss the
shortcomings of 2D warping and thus suggest 3D
morphing. In the past, there have been many efforts done
in 2D and 3D metamorphosis. Lee et al present a survey
of 2D warping algorithms including those based on mesh
morphing, field morphing, radial basis functions, thin
plate splines, and energy minimization [2]. Prior work on
field morphing [3] will be discussed in section 2. For
mesh morphing [4], two meshes from the source and
target images are used to define the spatial transformation
that maps all points in the source image onto the target
image. There is no folding or discontinuity allowed on
mesh morphing. The radial basis functions and thin plate
splines use more general form of features such as lines
and curves [5]. On energy minimization method, the
morphing transition is specified by physically meaningful
energy terms and satisfied by minimizing their sum [6]. It
results in a natural warping but with very high

computation cost.

 Several prior researches on volume morphing were
presented in the past. Levoy et al extend [3] to 3D volume
data and present optimization for computational
efficiency. [7] attempts to automatically generate
morphing without the aid of user input. Some work [7,8]
transforms the volume data into frequency domain to
perform morphing. Recently, Yagel et al [9] use ray
deflector technique for volume morphing and allow local
control of shape deformation. This approach computes
morphing in those regions of volume data that contribute
to the final image.

 Beier and Neely propose a feature-based (field)
metamorphosis method [3]. Using this method, an
animator begins with establishing correspondence with
pairs of feature primitives such as points and line
segments between two images or models. In this paper,
we attempt to optimize this method. The main
contributions of this paper are as follows. First, we
present two methods to improve [3] by taking into account
the positions of features. The fastest of two proposed
schemes achieves 20 times faster for our test images.
Second, we extend the fastest method to 3D volume data
as did in [1]. However, our extension allows both global
and local control of volume deformation. Additionally, we
describe several interesting morphing operators similar to

[9], but allow more intuitive control of volume
deformation. This paper is organized as follows. Section 2
will first review [3] and then describe proposed methods.
Our experimental results on image metamorphosis will be
shown and discussed in Section 3. In Section 4, we will
describe several morphing operators for 3D volume data.
Some concluding remarks and future work are given in
Section 5.

2. Optimization on 2D Feature-based Morphing

In this section, we will first revisit a 2D feature-based
morphing proposed by [3]. Then, we propose two
optimized methods to reduce its morphing time. The
proposed methods are termed: scan-line and optimized
subdivision, respectively.

2.1 Feature-based Image Morphing

The metamorphosis technique [3] is accomplished based
upon fields of influence surround two dimensional control
primitives. First, the influence of all feature pairs on all
pixels is computed. Second, a blending process is used to
determine the colors of the morphed image. The features
can be a single or multiple line pairs. In the following, we
use identical equations used in [3] to describe this method.
In [3], equations (1)(2)(3) are used to compute the
influence of a single line pair on pixels (as shown in
Figure 1).

 Destination Image Source Image

 Figure 1: Single line pair

A single line pair for the source and destination images

are ''QP and ÑÒ , respectively. Using inverse

mapping, this feature pair finds the pixel X in the

destination image that corresponds to'X in the source
image. Perpendicular() returns the vector perpendicular
to the input vector. For the multiple line pairs, the weight
of each pair is computed by the following equation:

where length is the length of a line, dist is the distance
from the pixel to the line, and a,b, p are constants to
control the effect of the lines. Finally, the morphing by
the multiple feature pairs is computed by the multiple line
algorithm presented in [3].

2.2 Scan-line Algorithm

The method proposed by Beier and Neely is a brute-force
approach which computes every pixel to new location
according to all feature line pairs. We propose a simple
method termed as scan-line algorithm to approximate this
method but with cheaper computational cost. Using
equation (1)(2)(3) to transform a scan-line, we can get a
line but rotated, scaled or translated (see Figure 2). Latter,
we will show this transformation is a linear function.
Therefore, on this basis, we morph two ending points only
for every scan-line using (1)(2)(3) and interpolate
warping for the remaining points using these two ending
points. In this manner, we approximate the influence of a
line pair, say Fi on a given scan-line, and term each
transformed line Ti. Then, we use equation (4) and
multiple line algorithm [3] to combine all Tis and
accomplish warping of this scan-line. This combination is
not a linear function, and thus a straight line could be
distorted into a curve (see Figure 3). Next, we will show
the transformation using by (1)(2)(3) is a linear function.

Assume that A and B are two ending points of a scan-line

and C is a point on ÂÃ . For a feature line pair, the
locations of A, B and C will mapped onto new coordinates

',' BA and 'C .

C = (1-s)A + sB and ô ∈© ­ ª² ± (5)

Using equation (1)(2)(3), we have

(2)
)()(

PQ

PQlarPerpendicuPX
v

−
−•−

=

P

Q

X

u

v

Q’

P’

u

v

X’

() (4)
bp

dista

length
weight 








+

=

''

)''(
)''(''

PQ

PQlarPerpendicuv
PQuPC

−
−•+−•+=

(6) '')1('''

''

)''(
)()(

)''(
(

)()(
'''

2

BAssBsAA

PQ

PQlarPerpendicu
PQ

PQlarPerpendicuPPPsBsAA

PQ
PQ

PQarPerpndiculPPPsBsAA
PPP

+−=+−=
−

−•
−

−•+−++−

+

−•
−

−•−+−+−+−+=

(1)
)()_(

2
PQ

PQPX
u

−
−•=

(3)
)(

)(
PQ

PQPendicularv
PQuPX

′−′
′−′•+′−′•+′=′

From equation (5)(6), we know the transformation
specified by a single line pair is a linear function.

 Figure 2. A single line pair

 Figure 3. The multiple line pair

2.3 Optimized Subdivision Algorithm

This proposed method is similar to the piecewise linear
approximation proposed by Levoy [1] but with further
optimization. For the morphing in highly linear regions,
the influence of all feature lines on every pixel within
these regions is quite similar. Therefore, we decide to
compute the morphing using simple linear approximation
to reduce the computation time. We perform this
approximation as follows. First, the target image is
divided into a coarse regular grid and morph the grid
vertices into the source image, equation (1)(2)(3) (see
Figure 4). Then, we approximate the morphing for the
pixels within the grid using bilinear interpolation.
However, this approximation could not work for some
grids where are highly non-linear influenced by the
feature lines. To avoid this, we will pick some pixels
within a given grid and compute these selected pixels by
(1)(2)(3) as well as by using approximation. In case that
the difference between two methods is large than a
threshold, we will subdivide this grid more finely and
then perform approximation. In this manner, we can
potentially save a lot of computation since we just
compute (1)(2)(3) for a small fraction of the pixels. The
above process is identical to [1]. To further improvement,
we would like to select test pixels in a smart manner as
follows. For the highly non-linear regions, they are likely
to be subdivided into the finer grids and thus, the test
pixels are possibly computed several times using

(1)(2)(3). To eliminate these redundant computations, we
select candidate pixels in a uniform fashion as shown in
Figure 5. The number of candidates is specified by the
user input. In this figure, a large grid (ABCD) consists of
several small regions (w by h). The black points shown in
this figure are our selected pixels. In case a large grid
(ABCD) requires further subdivision, we need not to
compute ``black’’ points in each small grid region (i.e,
since their values are stored, and have been calculated
early to test if ABCD grid is required for subdivision).
Next, we take equation (4) into account to further
improvement. In (4), the weight is in proportion to the
inverse of the bth power of distance. So, when a pixel is
far from a feature line, it will be less influenced. Some
feature lines will be likely to be ignored by taking (4) into
account.

Figure 4. Bilinear interpolation

Figure 5. Uniform pixel selection

Assume the i th feature line pair is denoted as Fi and

transforms any pixel X onto 'X . We have

XXD ii −= ' and its weight is represented by weight

(i). We formulate the morphing as:

∑
∑=

=

×
+=

N

i
N

j

i

jweight

Diweight
XX

1

1

(7))
)(

)(
('

where N is the number of line pairs. This equation
implies that weight (i) can be ignored if it is a small

portion of ∑
=

=

Nj

j

jweight
1

)(. A threshold, say τ , is

specified by the user input and S is defined as a set of Fi

where weight (i)/ ∑
=

=

Nj

j

jweight
1

)(is larger than τ . We

approximate the formula (7) by:

3. Experimental Results and Discussion

We implement proposed methods on the Intel Petium 133
PC platform. The experimental results are shown in Table
1. We use two 320 by 200 resolution images and impose
22 line pairs to conduct experiments. The scan-line
method is slightly faster than [3], even though the number
of pixels computed by (1)(2)(3) is reduced from 320 by
200 by 22 to 320 by 2 by 22. The main reason is that the
cost spent in (1)(2)(3) is a small portion of the total
warping time. In our experiments, it is about 20%. The
other 80% time is spent on (4) and the multiple line
algorithm. The method proposed by Levoy et al performs
the next best; it achieves about 15 seconds to finish a
image warping. This method uses bilinear interpolation
for the highly linear regions to reduce computing time.
The scan-line employs 1D interpolation but Levoy et al
use 2D approach. The latter is expected faster and
verified from our results. The optimized subdivision
method is the best performer; it is faster than [3] and [1]
by approximately 20 and 7.5 times, respectively. The
improvement is due to that the number of feature pairs is
decreased in each grid. For example in our experiments,
the grids near to the corners are hardly influenced, and
most feature pairs can be ignored. Finally, a morph
sequence is shown in Figure 6 (shown in the end).
Figures 7 (a) and (b) show feature lines on source and
target images. To compare morphing quality, we measure
average (E(d)) and variance (ì2 (d)) of pixel distance (d)
over two images between Beier et al’s and proposed
methods. The results are shown in Table 2.

320 by 200 image and 22 line
pairs

T. Beier et al 40 sec.
Scan-line algorithm 32 sec.

Levoy et al 15 sec.
Optimized

Subdivision
2 sec.

Table 1. Experimental Results

E(d) ì
2 (d)

Scan_line 0.51 0.29
Levoy et al 2.10 10.61
Optimized subdivision 3.16 16.09

Two 320*200 images, 22 feature line pairs

Table 2. Morphing quality comparisons with Beier et al’s
method

Figure 7 (a) Feature lines on source image

Figure 7 (b) Feature lines on target image

(8))

)(

)(
(' ∑
∑∈

∈

×
+=

Si

Sj

i

jweight

Diweight
XX

4. Volume Deformation Using Features

Levoy et al [1] extend [3] to warp 3D volume data. In this
section, we do identical extension but with the following
difference. First, we use optimized subdivision to reduce
warping time. Second, we design several interesting
operators allowing both global and local deformation of
volume data. Only global warping is reported in [1].
Yagel et al [9] propose similar operators using ray
deflector technique. Using ray deflector, the data itself is
not changed and only the directions of traced rays are
altered. Our proposed scheme does change volume data.
We can further deform this resulting data using additional
features. Using ray deflector [9], an animator must
impose correct order on the activation of various
deflectors on each ray. If further warping is required, the
rays are deflected using both newly added operators plus
the older operators. From this view of point, our proposed
operators seem more intuitive and efficient. In our

extension, by defining a pair of elements (',ee). Using

inverse mapping, we can find a point p in the source

volume that corresponds to'p in the destination volume.

4. 1Translate Operator

When we want to achieve the visual effect of pulling out
the object, we can impose a translator operator on the
object. See an example in Figure 8. In this figure, we
want to pull out the nose starting with a MRI head scan.
In our design, a translate operator is defined by a pair

of Ç æ æ æ=< >
± ² ¹
­ ÿ , where e0 is a point and e1~e8

are line segments to define a closed area. A simple
translate operator is shown in Figure 8 (a)(b)(c). A e0 pair
is used to control the effect of translation. A pair of <e1~e8

> using the same line segments is used to freeze the area
of volume bounded by <e1~e8 >. The warping by a pair of
F is computed by equation (7). Using (7), since the area
bounded by <e1~e8 > is far from e0, it is less influenced by
this feature point. In this manner, this area can be seen as
unchanged. Figure 8 shows an example of using a
translate operator. In this example, the nose can be
further pulled longer (Figure 8 (c)) on the basis of
intermediate volume (Figure 8(b)). The exact deformation

for the pulled nose is determined by (00 ',ee).

4.2 Discontinuous Operator

As suggested in [9], a discontinuous operator can be used
to generate cuts on volume data. Our discontinuous
operator is designed as follows. First, we specify two line
segments <L, L> (i.e., same line segments) for the source
features and <L1,L2> for the destination features (define
the crack on volume data) as shown in Figure 9. This
operator will generate two cutting planes with the normal

vectors n1 and n2, respectively. This is a localized
operator and is limited by a constant D measured by the
distance from each cutting plane to L. The warping by the
discontinuous operator is computed by following
formulas,

where d is the shortest distance from the point pi to the
closer one of two cutting planes. Similarly, we use
equation (4) to compute weight but with an additional
condition: only the left side of L is effected by L1 and only
the right side of L is effected by L2. This test can be

determined by the sign of ii ncp ⋅' , where c is the

central point of Li. 1>u means Pi is out of line
segment. In our experiment, k is varying from 1 to 4.
Figure 10 shows an example of cutting into a MRI scan
head using this operator.

4.3 Scale Operator

Another localized operator introduced is scale operator.
We defined this operator by the following equation,

For a scale operator, we will specify a line segment e and
D. The shortest distance between p and e is d. If d is less
than D ,then p will be influenced by this local operator. In
Figure 11, we first use a discontinuous operator to create
a crack on the sphere and then use a scale operator to
enlarge the crack.

Dd

uorDd

ifpp
D

d
p

ifp
p

ii
k

i

i

i ≤
>>







−−+
=

1

)'()1('

'

2

2

2

)()(

PQ

PQPX
u

−
−⋅−=

0'

0'0

≤⋅
>⋅





=
i

i

i
i

ncpif

ncpif
w

w

Dd

Dd

ifpp
D

d
p

ifp
p

iii

i

i ≤
>







−−+
=

)'()1('

'

2
2

2

4.4 Optimization

Finally, we show the experimental results for our
designed operators. The experiments were conducted on
SUN sparc-20 workstation. The size of the MRI head scan
is 128 by 128 by 84 and the size of concentric spheres is
128 by 128 by 128. We use the proposed optimization to
speed up computation. Table 3 shows the timings for both
non-optimized and optimized methods. From table 3, we
see morphing with optimization is consistently faster than
non-optimized method. For the global operator like
translate operator, it achieves better speed up. For the
local operator like discontinuous operator, its speed up is
not so significant.

Table 3. Experimental results for volume morphing

5. Conclusion and Future Work

In this paper, we propose efficient approximation
methods for the feature-based image warping technique.
We extend proposed methods to 3D volume data and
achieve faster warping computation. Several warping
operators are proposed to achieve special visual effects on
volume data. These operators can be either global
(translate) or local (discontinuous and scaling). An
animator can impose operators on data in a very intuitive
manner. Modeling with multiple operators is easy. An
example is shown in Figure 11. In this example, a
discontinuous operator is first imposed and then a scaling
operator is imposed next. Finally, we plan to design more
types of operators such as twisting. We will use these
designed operators in our surgical simulation project
collaborating with Hospital of National Cheng-Kung
University in Taiwan.

 Source Target

 (a) (b) (c)

Figure 8. A translator operator and its application
(a)(b)(c)

Figure 9 A discontinuous operator

Çêèöóæ ²±¯ Âï æùâîñíæ ðç â äöõõêïè öôêïè â åêôäðïõêïöðöô

ðñæóâõðó

Examples Dataset Optimize
Execution
time(sec)

 Non 202.5052
1st nose

Yes 9.17017
 Non 201.7112

2nd nose
Yes 9.210818

 Non 68.2796
cut brain

Head
128*128*84

Yes 24.27296
scale Sphere

128*128*128 Non 49.22352

Ôäâíæ» æ’ ¾ æ ãöõ øêõé â Å

Äöõ» Ôäâíæ» æïíâóèæ õéæ äöõ

Çêèöóæ ²²¯ Ôäâíæ ðñæóâõðó âïå êõô âññíêäâõêðï

Reference

1. A. Lerios, C. Garfinkle, and M. Levoy, ``Feature-
based Volume Metamorphosis,’’ Proceedings of
SIGGRAPH’95, pp. 449-456, 1995.

2. Seungyong Lee, Geroge Wolberg, Kyung-Yong
Chwa, and Sung Yong Shin, ``Image
Metamorphosis with Scattered Feature
Constraints,’’ IEEE Transactions on Visualiaztion
and Computer Graphics, Vol. 2, No. 4, Dec., 1996,
pp. 337-354.

3. T. Beier and S. Neely, ``Feature-based image
metamorphosis,’’ in Computer Graphics, vol
26(2),pp 35-42,New York, NY, July 1992.
Proceeding of SIGGRAPH ’92.

4. Wolberg,G.,”Digital Image Warping”. IEEE
Computer Society Press, 1990.

5. D. Ruprecht and H. Muller, ``Image Warping with
Scattered Data Interpolation,’’ IEEE Computer
Graphics and Applications, vol. 15, pp. 37-43, Mar.
1995.

6. S. Lee, K-Y, Chwa, J. Hahn, and S.Y. Shin, ``Image
Morphing Using Deformation Techniques,’’ J.
Visualization and Computer Animation, Vol. 7, no.
1, pp.3-23, 1996.

7. T. He, S. Wang, and A. Kaufman, ``Wavelet-based
volume morphing,’’ Proceedings of

Visualization’94, pp. 85-91.
8. J. F. Hughes, ``Scheduled Fourier Volume

Morphing,’’ Proceedings of SIGGRAPH’92, pp.
43-46.

9. Y. Kurzion and R. Yagel, ``Space Deformation
Using Ray Deflectors,’’ 6th Eurographics Workshop
on Rendering’95, pp. 21-32.

Acknowledgements

This research is supported by the National Science
Council of Taiwan, ROC, project No. NSC-87-2213-E-
006-012

Figure 6. A morph sequence

