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ABSTRACT

Deploying style transfer methods on resource-constrained

devices is challenging, which limits their real-world ap-

plicability. To tackle this issue, we propose using prun-

ing techniques to accelerate various visual style transfer

methods. We argue that typical pruning methods may not

be well-suited for style transfer methods and present an

iterative correlation-based channel pruning (ICCP) strat-

egy for encoder-transform-decoder-based image/video style

transfer models. The correlation-based channel regularization

preserves the feature distributions for content and style

references, and the iterative pruning strategy prevents layer

collapse when pruning on the encoder-decoder structure. Ex-

periments demonstrate that the proposed ICCP can generate

visual competitive results compared to SOTA style transfer

methods and significantly reduces the number of parameters

(at least 70K) and inference time. Model is available at

https://github.com/wukx-wukx/ICCP.

Index Terms— visual style transfer, model pruning

1. INTRODUCTION

With the rapid development of deep learning, artificial in-

telligence generated content (AIGC) has become a popular

research area. As a typical AIGC task, style transfer [1] is a

creative computer graphics and multimedia application based

on modern visual signal processing techniques. By rendering

an image/video with artistic features guided by a style refer-

ence, visual style transfer (VST) applications enable content

creators and users to generate restyled visual media.

Although significant progress has been made for im-

age/video stylization tasks, most of these methods [2–5] focus

on improving the visual effects by using high-performance

cloud servers. The high memory usage and latency pre-

vent these methods from being widely used on resource-

constrained mobile devices. To create lightweight models,

existing structured [6, 7] or unstructured [8, 9] pruning
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Fig. 1. The difference between single-channel based methods

and our correlation-based method.

methods try to cut off the channels directly or remove less

important connections, respectively.

However, most pruning methods are designed for clas-

sification and object detection and are not suitable for VST

tasks. As shown in Fig. 1, when pruning 80% parameters of

MCCNet [4] by NetSlim [7], the outputs fail to maintain style

consistency with the input style reference (shown on the top

left of the content image). The reasons are two folds for such

observation: 1. VST methods usually employ an encoder-

decoder-based backbone, which is more complex than plain

CNN networks; 2. For image classification, network pruning

prioritizes the most discriminative channels, typically those

that elicit high response outputs. VST tasks rely on the

distribution of features across different channels to measure

style information [4]. Pruning based on single-channel

criteria could potentially compromise the preservation of

valuable style information. Therefore, it is critical to take

the nuances of the specific task at hand into account when

deciding on the appropriate pruning criteria to ensure optimal

performance.

In this study, we present a novel approach to generate

lightweight VST models that are suitable for mobile devices.

Our approach involves a correlation-based channel regular-

ization process that evaluates the similarities among channels

within a layer, as shown in Fig. 1(b). Unlike single-channel-

based pruning methods, which consider the most discrimina-

tive channels, we prune channels that produce similar outputs

based on the degree of their correlation. This correlation-

based channel regularization term helps to increase the gap
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between the preserved and pruned channels and reduce the

similarities of the preserved channels. To prevent layer col-

lapse, where all channel outputs in a layer are pruned, we

adopt an iterative pruning strategy that is more suitable to the

encoder-transform-decoder VST model structure.

In summary, (1) we propose a correlation-based channel

regularization by adding restraints on the correlations among

channels, which can reduce redundant channels and keep

channel diversity; (2) we introduce an iterative pruning

strategy to keep the whole style transfer performance by

gradually increasing the prune ratio and pruning encoder

and decoder alternatively; (3) experiments on image and

video stylization tasks prove the efficiency and generalization

ability of the proposed method, which could be applied to

different VST models in a plug-and-play way and reduce

99.13% parameters and save 92.78% inference time.

2. METHODS

2.1. Problem Definition

Given a content reference (image or video frame) Ic and a

style reference Is, arbitrary style transfer methods aim to gen-

erate a re-stylized image Ics. The style transfer model M con-

sists of an encoder E, a transform module T, and a decoder

D. By the encoder E, we obtain content representations fc of

the content image and extra style embedding fs. Then fc and

fs are fused through T to obtain the stylized representation

fcs which maintains the structure of the content image while

being rendered to the desired style. Finally, D decodes fcs to

Ics with the help of style transfer losses. We aim to generate

a lightweight model M′ (with E
′-T′-D′) that allows us to

generate similar visual effects to M, but reduces the needed

resources when computed on mobile devices.

2.2. Correlation-based Channel Regularization

Different from traditional single-channel-based pruning meth-

ods, to extend the difference between preserved and pruned

channels while also reducing the preserved channels’ similar-

ities, we propose a correlation-based channel regularization

term. In detail, when training the network, we have a convo-

lutional layer l with output feature map F l ∈ R
B×C×H×W ,

where B,C,H,W denote batch size, channel number, height

and weight, respectively. For simplicity, we denote F l as

F . Then we obtain a channel index subset that satisfies the

following conditions:

R = {i|γi ≥ t}, (1)

where γi uses the definition in article [7], denotes the value of

the scale factor corresponding to the ith channel of current

convolutional layer. t is the scale factor threshold, whose

value depends on the prune ratio r. And the size of the R

is C ′. So we have

F ′ = F:,R,:,:, F
′ ∈ R

B×C′
×H×W , (2)

We convert F ′ to F ′ ∈ R
B×C′

×HW and get its transpose

(F ′)T ∈ R
B×HW×C′

, then calculate the similarities among

the C ′ channels
S = F ′(F ′)T , (3)

where S ∈ R
B×C′

×C′

, then add the values of all dimensions

to receive a value S′ ∈ R. Adding all layers’ similarity

values, we get

SL =
L∑

l=1

S′, (4)

then we add an L1 regularization on SL to get correlation-

based regularization term Lc = |SL|. Therefore, the whole

optimization object for image-stylized approaches is:

Ltotal = Lstylized(f(Ic, Is), Ic, Is) + λ
∑

|γ|+ ηLc, (5)

where λ and η are weight factors, γ denotes the value of the

scale factor which is defined by Liu et al. [7].

In the optimization process, the third term we proposed in

Eq. (5) will get smaller, which means the similarities among

the remaining channels are getting smaller. In other words,

there will not be remaining channels focusing on a similar

area, and thus this removes redundancy. The second term,

which is adapted from Liu et al. [7], makes the differences

between pruned and remaining channels greater. The larger

difference makes it easier for our algorithm to identify “hard”

channels, i.e., channels for which it is difficult to determine

whether to be pruned or not.

2.3. Iterative Layer-wise Pruning Strategy

For the E-T-D based VST approaches, E is responsible

for extracting features from style and content images, while

D (symmetrical structure with E) is used for transforming

the features to stylized images. Since it is unreasonable to

deal with the encoder and decoder independently (ignoring

the symmetry between them), we deal with the encoder

and decoder alternatively to exploit their symmetry. When

slimming the models by using an extremely large pruning

ratio, a typical train-pruning-fine-tuning pipeline will prune

too many channels directly at once. To address this problem,

we increase the prune ratio gradually each iteration by

alternatively pruning the encoder and decoder. Furthermore,

different from sorting all channels of all layers by their

importance [7], we prune each layer separately to avoid

affecting the correlation among channels of each layer.

The overall pruning process is shown in Algorithm 1. We

set the number of iterations to NI = 2 and control the number

of channels pruned for each layer. At the limit, there will be a

fixed number of channels remaining for each layer. Thus the

total prune ratio r of the model is

r = r1 + r2 − r1r2, (6)

where r1, r2 are the prune ratio of different iterations.

For typical approaches, there will be one iteration, train-

ing, pruning, and fine-tuning E and D directly with a large

prune ratio. Since our method has two iterations, it prunes
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Fig. 2. ICCP pipeline and creating Lc. Left: Pipeline design. Ic and Is are inputs and denote content image and style image,

respectively. Ics is the style transferred image. The circle with number and arrows represents the order of Iterative pruning, r1,

r2 denote the prune ratio in different iterations. The red dotted rectangle marks the modules that will be pruned (Encoder and

Decoder). Right: Correlation-based channel regularization. Taking the first iteration pruning Encoder as an example, the front

of the red dotted line represents the training process, while the back represents the pruning process.

E and D alternatively and increases the prune ratio gradu-

ally until it reaches the desired value. And each time E or

D is processed, the training, pruning, fine-tuning process is

included. Through applying iterative pruning, we can take

advantage of the symmetry of encoder and decoder structures,

and this way avoid layer-collapse and performance drops.

Algorithm 1 Iterative layer-wise prune.

Input: Pre-trained model M {E-T-D}, training data {Is,

Ic}, number of iterations NI , prune ratio {r1,...,rN};

Output: The compressed model M′ {E′- T′- D′};

1: for i ∈ {1, ..., NI} do

2: Train E with Ltotal;

3: Prune each layer of E with prune ratio ri;

4: E → E
′;

5: Fine-tune E
′ and T

′;

6: Train D with Ltotal;

7: Prune each layer of D with prune ratio ri;

8: D → D
′;

9: Fine-tune D
′ and T

′;

10: M
′ → M

11: end for

12: return compressed model M′;

3. EXPERIMENTS

3.1. Datasets and Experimental Settings

Datasets. We use MS-COCO [10] and WikiArt [11] as con-

tent and style image datasets for network training. MS-COCO

is a dataset with a total of 2.5 million labeled instances in

328k images, and the WikiArt dataset contains many artworks

in different styles.

Training, Pruning and Fine-tuning Settings. We select

MCCNet [4] as a basic visual stylization approach and choose

NetSlim [7], AKECP [12], CHIP [13] and CPST [14] as

contrast pruning methods to prune MCCNet. For our ICCP,

when training, we set the weight factor λ=1e-4, η=1e-7, the

learning rate to 1e-4, and the batch size to 8. The fine-tuning

process has the same setting as training but removes our

proposed correlation-based channel regularization term Lc.

The prune ratios for two iterations r1 and r2 are set to 0.3

and 0.857, respectively, creating an overall prune ratio of 0.9.

And the training and fine-tuning steps are all set to 40,000.

For other pruning methods, we follow their settings but set the

prune ratio r = 0.9. We implement all these pruning methods

on two NVIDIA TITAN RTX and test the lightweight models

on the Samsung Galaxy S10.

Table 1. Quantitative results for different pruning methods.
Parameters

Method FLOPs Temporal Loss Encoder Transform Module Decoder

MCCNet [4] 209.32G 7.30× 10−8 3.51M 1.05M 3.51M

+NetSlim [7] 9.09G 6.70× 10−8 0.48M 1.05M 0.11M

+AKECP [12] 209.32G 7.16× 10−8 3.51M 1.05M 3.51M

+CHIP [13] 12.14G 6.49× 10−8 0.14M 1.05M 1.25M

+CPST [14] 7.30G 6.50× 10−8 0.21M 1.05M 0.10M

+Ours 2.11G 6.44× 10−8 0.03M 0.01M 0.03M

Table 2. Average run time (seconds) for our method and other

methods with three input sizes on Samsung Galaxy S10.
Input size MCCNet [4] +NetSlim [7] +AKECP [12] +CHIP [13] +CPST [14] +ICCP (Ours)

128 × 128 0.310 0.055 0.298 0.057 0.061 0.032

255 × 255 0.770 0.134 0.758 0.141 0.131 0.072

512 × 512 2.757 0.478 2.829 0.516 0.546 0.199

3.2. Efficiency Analysis

In this study, we compare the parameters and FLOPs of MCC-

Net before pruning and after using NetSlim [7], AKECP [12],

CHIP [13], CPST [14] and our ICCP. The comprehensive

result is shown in Table 1. In total, ICCP achieves the lowest

FLOPs and parameters. The encoder, decoder, and transform

module parameters have been reduced by 99.15%, 99.15%,
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Fig. 3. Visual comparisons for different pruning methods. NetSlim and CPST fail to generate stylized results for layer collapsing

during pruning; AKECP does not reduce the model size; CHIP produces unexpected color shifts compared with the results of

MCCNet. Compared with these methods, our method could generate similar results with MCCNet while significantly reducing

parameters.

and 99.05%, respectively. Likewise, FLOPs have been re-

duced by 98.99% when using ICCP. AKECP achieves com-

pression by setting some parameters to zero, exhibiting sim-

ilar parameters and FLOPs to MCCNet. CHIP and CPST

remove the channels directly but reserve higher parameters

and FLOPs than our ICCP.

Our ICCP achieves the fastest inference time (0.032s,

0.072s, and 0.199s) with all three input image sizes. For an

input size of 512 × 512, our inference speed is improved

by 92.78% compared to the original MCCNet [4]. Our

proposed method enables the style transfer task in a real-time

performance, potentially enlarging the scope of application

towards different VST methods. To measure the coherence

of the videos generated from different pruning methods, we

calculate temporal loss following [15]. The result is shown

in Table 1. We observe a small difference between these

values, demonstrating that our method can generate relatively

stable videos even if the number of parameters and memory

requirement is reduced significantly.

3.3. Visual Quality Assessment

We compare stylized images and videos generated by dif-

ferent pruning methods, including MCCNet [4], MCCNet +

NetSlim [7], MCCNet + AKECP [12], MCCNet + CHIP [13],

MCCNet + CPST [14], and MCCNet + ours. It should

be noted that CPST is a channel pruning method specially

designed for style transfer. Fig. 3 shows that our ICCP

can generate visually appealing results compared with other

single/multi-channel-based pruning methods.

Furthermore, we compare the image style transfer result

of our pruned model with several SOTA image stylization

methods, including AdaIN [16], MCCNet [4], Artflow [17],

AdaAttn [18]. AdaIN, MCCNet, and AdaAttn are encoder-

transform-decoder-based CNN approaches while Artflow is

based on the flow model. Our method yields competitive and

comparable results to the aforementioned SOTA methods, as

Style Content Ours

866KB

MCCNet [4]

33.1MB

AdaIN [16]

28 MB

AdaAttN [18]

128.4 MB

Artflow [17]

74.38 MBModel Size

Fig. 4. Image style transfer results by different style transfer

approaches. Our method could significantly reduce the model

size while preserving the visual quality.

depicted in Fig. 4. Specifically, our ICCP effectively trans-

fers the given styles for all the shown cases while accurately

preserving the input content structure/patterns. In certain in-

stances, our ICCP performs even better. For example, as

exemplified in the 1st row, our ICCP can generate a more re-

alistic, closer-to-reference style (vs. AdaAttN) without noise

(vs. AdaIN and Artflow) on the girl’s face. In the 2nd row, the

generated image of MCCNet has a highlight around the bird’s

body, but not in our approach. The visual results of our ICCP

are comparable to those of these image stylization methods,

with much less memory requirement and computation time.

4. CONCLUSIONS

This paper proposes an iterative correlation-based channel

pruning (ICCP) strategy for encoder-transform-decoder-

based image/video style transfer methods, which can be

deployed on resource-constrained devices with fewer pa-

rameters and faster inference speed. The proposed ICCP

introduces a channel regularization that adds restraints on

channel correlation and an iterative pruning strategy to avoid

the layer collapse problem. Quantitative and qualitative

measurements adequately prove the validity of our method.

Limitations. Although the proposed ICCP approach achieves

a significant reduction in parameters, the training process still

requires considerable time to compute correlations. In the fu-

ture, we aim to explore methods to reduce the model training

times, leading to better results.
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