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Abstract—If the video has long been mentioned as a widespread visualization form, the animation sequence in the video is mentioned
as storytelling for people. Producing an animation requires intensive human labor from skilled professional artists to obtain plausible
animation in both content and motion direction, incredibly for animations with complex content, multiple moving objects, and dense
movement. This paper presents an interactive framework to generate new sequences according to the users’ preference on the starting
frame. The critical contrast of our approach versus prior work and existing commercial applications is that novel sequences with arbitrary
starting frame are produced by our system with a consistent degree in both content and motion direction. To achieve this effectively,
we first learn the feature correlation on the frameset of the given video through a proposed network called RSFNet. Then, we develop
a novel path-finding algorithm, SDPF, which formulates the knowledge of motion directions of the source video to estimate the smooth
and plausible sequences. The extensive experiments show that our framework can produce new animations on the cartoon and natural
scenes and advance prior works and commercial applications to enable users to obtain more predictable results.

Index Terms—animation, sequencing, RSFNet, distillation, SDPF
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1 INTRODUCTION1

V IDEO has long been a widespread media form in our2

daily life. In addition to visualizing, the sequence3

of animation in a video is mentioned as storytelling for4

people. Animating production is usually a specialized and5

time-consuming job, requiring intensive human labor from6

skilled professional artists. In traditional cartoon animation7

(i.e., cel-based and path-based animation) the procedure is8

complicated and needs much repeated manual labor, and9

a large amount of cartoon materials have been produced10

during this procedure. If all these material can be effectively11

managed and reused, we not only can speed up the time12

of producing an art but also easily create variations of13

the existing material. Although the recent computer-aid14

techniques have removed the burden of artists from tedious15

work in producing new animations, understanding the con-16

tent (i.e., character’s gesture, background scene, etc.) and17

finding smooth transitions, are still challenging. The existing18

commercial applications, e.g., Toon Boom, Adobe Animate,19

mostly serve the capability on cartoon characters with basic20

animations. They lack diversity in animation styles and21

cartoon scenes. Therefore, it’s necessary to establish and22

develop a cartoon images management and retrieval system23

supporting interactive fast animation making, so that the24

artists can pay more attention to the creative work, rather25

than those repeated work like colorizing, repainting, etc.26

This problem has been explored. Previous work on this27

domain can be divided into feature-based and sequence-28

estimation methods. In feature-based methods, research at-29

tempts have been made to get knowledge on image content30

[5, 28, 26, 3]. Fried et al. [5] train a convolutional neural31
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network to map images into lower dimensional space and 32

define their similarity by a distance calculation. Yu et al. 33

[29] propose an algorithm to construct the feature space 34

according to the shape context of the character in the image 35

and the user’s label. However, their dataset is labeled by 36

human judgment, which is difficult or time-consuming to 37

collect. Then, after projecting images into the feature space, 38

the distance metric between two images can be considered 39

as the similarity distance. Nevertheless, the user still needs 40

to manually label the relation between the data. Yang et al. 41

[26] extract three different features of the character in the 42

image’s shape context, color histogram, and motion direc- 43

tion. These features are then fused to result in the feature 44

vectors of the character images. But, the segmentation of the 45

character images required by their algorithm is not easy to 46

generate correctly without professional skill. 47

In contrast, the sequence-estimation methods investi- 48

gate different approaches to generate a plausible animation. 49

Schödl et al. [21] train a binary classifier and apply the Q- 50

learning algorithm [13] on the images library to produce 51

arbitrary length video sequences. Yu et al. [27] use a semisu- 52

pervised algorithm to select the next frame of the initial 53

frame according to the similarity distance. Then, they will 54

treat the next frame as the initial frame and repeat this 55

iterative process to generate the results. Recently, Morace 56

et al. [17] construct a graph by the similarity distance of 57

images and compute the shortest Hamiltonian path for re- 58

constructing the sequence from a set of un-ordered images. 59

However, there are three major drawbacks in the above 60

research. First, they solely focus on cartoon characters. 61

Second, feature extraction and the distance metric used to 62

measure such features are developed independently. And 63

third, with these two mentioned issues, such a prior system 64

is not sufficient to challenge the input clip that consists 65

of dense motion and content. Therefore, we address the 66

demanding problem by combining knowledge learned from 67
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a self-trained network and modeling them in a path-finding68

strategy to produce plausible and smooth videos efficiently.69

In this paper, we propose a framework to address the70

above challenges. We aim to create new smooth sequences71

according to users’ preferences of the starting frame. We72

do not know the sequence we are to generate except the73

starting frame. Our designed framework attempts to mini-74

mize the artifacts caused by cold transition and the flip-flop75

phenomenon. The proposed framework pays attention to76

the pairwise relationship on both content and motion direc-77

tion of an image and others in the image gallery. Our es-78

sential contribution to reducing user effort is automatically79

propagating user preference to predict a future sequence80

in a meaningful manner. To achieve this, we present a81

novel path-finding algorithm that absorbs the knowledge of82

features in our self-defined network and motion properties83

in the ground truth, which remedies the drawbacks of prior84

work.85

Our framework consists of an online knowledge learn-86

ing and an offline sequence generation stage. The online87

stage learns the feature correlations of pairs of images in88

a given image set. These feature correlations serve as the89

initial guidance for new paths explored in the offline stage.90

The content of frames in real-world videos is complex in91

both background and foreground. Meanwhile, to model the92

user’s selection to a plausible and novel animation, we93

need to calculate a meaningful degree of interchangeability94

between any two frames. We achieve this by proposing95

a neural network model, Recursive-based Semantic Feature96

Network (RSFNet), to learn the high-level representation of97

images. It is because the neighborhoods tend to be selected98

as correlation, which may prevent us from exploring new99

animations.100

In the offline stage, the correlation of images learned in101

the online stage is performed in a graph. Users can specify102

their preferences for any node on the graph as the starting103

frame of their desired animation. Besides the meaningful104

degree, we need to preserve the temporal coherency in105

transitions. We tackle this by proposing an algorithm, Single-106

source Distillation Path-Finding (SDPF), in which we embed107

constraints to interpret potential candidates for plausible108

animations. In summary, our main contributions are as109

follows:110

• A framework for resequencing videos, which exploits111

the feature correlation and the motion direction be-112

tween frames to efficiently produce plausible and113

smooth video results.114

• A framework to extract the representative feature vec-115

tors of the images in general style without requiring116

a large amount of dataset. And, the distance of the117

vectors can properly match the similarity of the images.118

• A novel path-finding algorithm that can synthesize119

the resultant videos with smooth transitions from the120

image collection. Moreover, the random selection of our121

algorithm can increase the diversity of the results, and122

thus make each resultant sequence distinct from the123

others.124

• Our overall system significantly reduces interaction125

time required to produce desired results. Besides, the126

proposed method works well in both cartoon scenes127

and natural videos, and therefore this enables users to 128

obtain more predictable results. 129

2 RELATED WORK 130

2.1 Feature Extraction and Dimension Reduction 131

Researchers seek different approaches in analyzing images 132

to learn the correlation between their representation. Os- 133

adchy et al. [19] propose an energy-based model to detect 134

faces with different views. Yang et al. [26] use multiple 135

features of cartoon characters to project images into lower 136

dimensional space. Zhang et al. [31] provide a flexible 137

way for the extraction and completion steps to reflect the 138

unique characteristics of cartoon animation. The transduc- 139

tive algorithm [6] can fuse these different features together 140

and construct a model which projects the character images 141

into lower dimensional space. Combining multiple types 142

of features [29] has achieved great success in many areas. 143

After extracting the feature vectors from the character’s 144

shape in the image, users can provide image pairs’ positive 145

and negative relationships to restrict the distance between 146

feature vectors. 147

With the revolution of deep learning technologies, re- 148

searchers develop the alternative promising approach. Fried 149

et al. [5] analyze patches by embedding them to a vector 150

space in which the texture of image patches are consid- 151

ered to define the similarity of them. Holden et al. [10] 152

use an autoencoder for human manifold. Zhang et al. [30] 153

propose an autoencoder architecture for image clustering. 154

They first train the local stacked contractive autoencoder for 155

the neighborhoods of training dataset based on Euclidean 156

distance metric. Zhang et al. [33] use a convolutional autoen- 157

coder network to project the images into lower dimensional 158

space, and the L2 distance between the latent vectors are 159

considered as the similarity of the images. Morace et al. 160

[17] utilize an off-the-shelf network LPIPS [32] to compute 161

the similarity distance between images. Most recently, Xu 162

et al. [25] introduce a dual-task deep learning scheme for 163

separating the structure content in a cartoon animation, i.e., 164

content video and effect video. 165

Contrasting the above approaches, we handle arbitrary 166

animation objects, including cartoon and natural scenes, 167

rather than only focusing on cartoon characters. We get the 168

knowledge of image representation by a self-defined net- 169

work which is sufficient to capture comprehensive features. 170

The network requires much less training dataset but has 171

better performance than those in prior work. Plus, it enables 172

us to be independent from such an intermediate network. 173

2.2 Images sequence ordering 174

Ordering a collection of images is usually considered as 175

path-finding problem in a weighted graph, in which images 176

are represented by vertices and the weights of the edges are 177

the similarity of two end points, and other constraints such 178

as temporal ordering, path smoothness, or user-control. 179

A variety of methods have been early developed to 180

create sequences [3, 21, 20]. Given a starting and ending 181

frame, the system proposed in de Juan and Bodenheimer [3] 182

traverses on the manifold to re-sequence an existing cartoon 183

library to a novel animation. Video textures [21] uses L2 184
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distance of raw pixels of images as similarity and applies185

Q-learning algorithm [13] to generate an arbitrary length186

video sequence whose motion is similar to input video.187

Their method can produce convincing results in which188

input video has repetitive motion or unstructured stochastic189

motion. However, as the way to calculate similarity cannot190

adequately describe the high-level features of images, the191

case of complex structured motion such as human body192

motion will fail. To overcome this problem, Schödl and Essa193

[20] extract six specified features from the key-frames to194

train a binary classifier. This classifier will judge whether the195

transition between the key-frames will be accepted or not,196

and the cost of the transition depends on their original video197

sequences. They use the beam search to find the smoothest198

sequence. For the better result of the beam search, a hill199

climbing algorithm is used to interactively minimize the200

total cost of the sequence from initial random.201

The seminal work has motivated researchers to inves-202

tigate deeper recently [27, 28, 26]. Yang et al. [26] present203

a cartoon gesture space to cartoon retrieval and synthesis.204

They use color, shape, and motion information in dissimi-205

larity estimation. Yu et al. [27] propose a semi-supervised206

algorithm to create new cartoon animation from the image207

library. They extract the shape context of the characters in208

the images, and calculate the similarity distance based on209

the shape correspondence. Inspired by these methods, Yu210

et al. [28] use a semisupervised multiview subspace learning211

algorithm to encode different features in a unified space.212

To model the diverse dynamics, Khan and Storkey [14]213

introduce a deep generative model for image sequences,214

in which they split the motion space into subspaces and215

perform a unique Hamiltonian operator for each subspace.216

Some different approaches are recently introduced [33,217

17]. To create a sequence, Zhang et al. [33] embed image218

collection into a convolutional autoencoder network. They219

then build the proximity graph based on the complete graph220

of the latent vectors and apply Monte Carlo algorithm to221

find the smoothest animation sequence. Meanwhile, Morace222

et al. [17] remove the last 10 percent outliers according to223

the generalized gamma probability distribution to fine-tune224

the smoothness of sequence. Then, they find the shortest225

Hamiltonian path to generate the resequencing results.226

The sharp contrast between our framework and theirs227

[3, 28, 26, 33, 17] is that we develop a novel path-finding228

algorithm SDPF to generate new sequences with arbitrary229

starting frame. Our SDPF is faster than a greedy path-230

finding, effective to explore novel sequence and control the231

motion consistency.232

3 SYSTEM OVERVIEW233

The framework of our video resequencing is illustrated in234

Fig.1, which consists of two primary models: a semantic235

relation graph (SRG) model for representing the relation of236

images in the given set of images, and a Single-source Dis-237

tillation path-finding (SDPF) algorithm for exploring a path238

on SRG to resequence the video. Our system takes as input239

a video, we aim to generate new smooth sequences with240

arbitrary starting frame while maintaining the consistency241

in both content relations and temporal coherency.242

Fig. 1: Our framework for regenerating video sequence.

The SRG models the set of frames in the given video to 243

a completed graph. RSFNet explores this, i.e., the network 244

we propose in this paper. RSFNet shoulders the task of 245

converting images ({xi}) into feature representation ({vi}) 246

in which every single vi represents a node in SRG. To 247

describe the semantic relation of vi, we merge the triplet 248

of recursive-based encoders (called R-Encoder) as a single 249

one, i.e., RSFNet, and train it with a distance loss function. 250

As a result, the connected edges in SRG are assigned by the 251

pairwise distances between feature representations. 252

Instead of naively traversing the graph and finding the 253

shortest path, which potentially prevents us from exploring 254

a new sequence, we find paths by the proposed SDPF algo- 255

rithm. Conceptually, SDPF firstly estimates the candidates, 256

which are potential to construct a new sequence, and then 257

distills them through constraints to define the final node at 258

each path-finding-iteration. Finally, the sequence of nodes in 259

the path is mapped to the corresponding frames to produce 260

smooth video results. We subsequently elaborate on each 261

module. 262

4 GRAPH GENERATION WITH RSFNET 263

Given a set of frames, we now aim to build a complete 264

graph of this set prior to the resequencing manner. As 265

mentioned in the related work, we propose a network 266

RSFNet to get knowledge on their feature representation 267

and embed the samples to a specific metric space where the 268

similarity or distance between any two samples is clearly 269

represented. Once the distance metric is learned, feature 270

representations and distance are capable of reflecting the 271

relation of input images. RSFNet is a reusable structure that 272

reduces the computational cost and efficiently represents 273

image information. RSFNet shoulders two significant roles 274

in the graph generation: firstly, RSFNet calculates latent 275

vectors corresponding to the given frames. Each vector is 276

treated as a node in the graph. Secondly, RSFNet is trained 277
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with a proposed distance loss to infer the similarity of latent278

vectors. This manner facilitates the distance of latent vectors279

more accurate. The details of the proposed framework are280

presented as follows.281

Fig. 2: (a) Architecture of RSFNet; (b) Zoom-in of an R-Encoder;
(c) Structure of NCM and C1R block.

4.1 RSFNet Structure282

In a common Convolutional Neural Network (CNN) frame-283

work, an encoder converts the input image x into a repre-284

sentation vector r (r = Φ(x)). The architecture of an encoder285

Φ(.) depends on the input in a specific application. For286

instance, in the application of image classification, the CNN287

is a good choice. When applied to video resequencing, such288

an off-the-shelf CNN might not be suitable since contextual289

information in a specific frame is necessary for generating290

new sequences. Besides, human often relies on a high-291

level semantic understanding of the video contents, usually292

after viewing the whole sequence, she/he can decide which293

frame should be selected the next frame in the sequence.294

Therefore, it is necessary to differentiate the target sequence295

scene to make the resultant sequence semantic, reasonable,296

and smooth. At this point, an encoder with a pure CNN297

structure may lack sufficient information for such an ap-298

pealing sequence.299

Motivated by the above reason, we design our RSFNet300

by the triplet of R-Encoders, which share the parameters,301

i.e., weights and biases. Each R-Encoder consists of two302

modules, Coarse Feature Extractor (CFE) and Recursive Feature303

Fining (RFF). The design is visualized in Fig.2. For the CFE304

module, we treat it as an extractor to obtain the initial305

feature maps. The backbone network of CFE is based on the306

VGG-19 network [23]. This pre-trained network is widely307

used in several applications in a feature extraction manner.308

Hence, it is reliable to be considered a good feature extractor.309

Furthermore, VGG-19 has been trained on a large-scale310

dataset. With this strategy, we can reduce the burden in311

training for this process. We solely use the first four blocks312

and remove the fifth block from the original VGG-19 frame-313

work since it lacks pixel-wise content information [7]. An in-314

put image I is firstly fed to CFE. Let matrix Xi ∈ RHi×Wi×k
315

denote corresponding feature maps produced by four layers316

of CFE. Here, k is the number of channels of each feature317

response. Hi and Wi are respectively the height and width 318

of the feature maps in layer i (i = 1 . . . 4). As shown in Fig.2- 319

(b), the feature maps Xi are enhanced along the channel 320

and space dimensions to obtain the feature maps Fi by 321

RFF module. In other words, instead of directly utilizing 322

feature maps from CFE, we propose an RFF module to 323

integrate with CFE to produce features that can depict the 324

variety content in frames. The effectiveness of this design is 325

visualized by the analysis in the later session A.1. 326

The Recursive Feature Fining (RFF) module is the core 327

of an R-Encoder, which shoulders the task of preserving 328

contextual information of images during encoding into la- 329

tent space. RFF is formulated by recursively integrating 330

feature maps of CFE. A straightforward technique could 331

be used instead of RFF is that re-scaling the feature maps 332

obtained from CFE and combining them together. However, 333

the feature extraction from a backbone, e.g. either VGG or 334

ResNet, is performed by a repeated process of convolutional 335

and max-pooling operations. These extracted features by 336

themselves loss the low-level information that is likely to 337

aid in discriminating object regions from the background 338

regions. Thus, such a simple technique, i.e., re-scaling, might 339

neglect smaller objects or information in the background 340

regions and eventually decrease the capability of the en- 341

coder. In the structure of our RFF, we embed two blocks, 342

NCM and C1R. NCM is to normalize the input feature 343

maps before the concatenation. Meanwhile, the C1R block’s 344

task is to compress the size of feature maps without losing 345

information. 346

The network architecture of the proposed RFF is shown
in Fig.2-(b). Four feature maps with different resolutions
obtained from CFE (Xi) are taken as the inputs of the
RFF. Mathematically, the above process can be recursively
expressed as:{

Fi = Ψ(φ(Fi−1 ⊗Xi)), (i = 2 . . . 4)

F1 = Ψ(X1)
, (1)

where Ψ(.) and φ(.) denote the functions from the NCM 347

block and C1R block, respectively; ⊗ is the concatenation 348

operation. By concatenating two different feature maps, 349

resultant feature maps Fi (i > 1) simultaneously captures 350

two different receptive fields. 351

To be more specific, NCM is designed to en-
hance the spatial representation for the input fea-
ture maps from VGG-19. This block performs the
Normalization→Conv3×3→MaxPooling structure. Output of
input feature maps F in passed through NCM is performed
as

Ψ(F in) = P (C3(Norm(F in))), (2)

where P (.) represents the Max-Pooling operator; C3(.) indi- 352

cates the standard convolution with the kernel size of 3× 3; 353

and Norm is a normalization operator. 354

C1R employs a 1 × 1 point-wise convolution and a
residual block. Our residual block consists of two batch
normalization (BN) layers and two 3 × 3 convolutional
layers. Note that, compared with the basic residual block
[9], our residual block removes the RELU layer after the
first convolutional layer to preserve more spatial details. See
Fig.2-(b), immediately after the concatenation which is used
to transmit the information of these two distinct layers, this
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block is embedded to learn the correlation of feature maps
from different layers. This process is expressed as:

φ(Fc) = C1(Fc) +BN(C3(BN(C1(Fc)))), (3)

where Fc is the resultant feature maps after the concatena-355

tion phase. C1 represents the 1× 1 point-wise convolution.356

With our above design, some benefits can be gained.357

First, using a pre-trained network as a backbone signifi-358

cantly reduces the training cost. Second, RFF can be easily359

embedded into an existing neural network. In the design of360

C1R block, 1 × 1 convolution is to increase channels corre-361

sponding to the previous layer. Meanwhile, residual connec-362

tion sufficiently mitigates the gradient vanishing problem,363

which usually occurs when training the deep network.364

We need to build the embeddings of frames such that
they have the following properties: (1) two similar frames
produce two embeddings so that the mathematical distance
between them is small, and (2) two very different frames
produce two embeddings so that the mathematical distance
between them is large. To do that, we model RSFNet that
contains the triplet of R-Encoders, which use the same
weights while working in tandem triplet of different input
vectors to compute comparable output vector. In our train-
ing, the distance loss Ld is used as the objective function to
reinforce the distance between two latent vectors to match
the similarity of the images well reflect pixel-level image
similarity. We train RSFNet using a set of triplet images
- an anchor xa, its positive xp, and negative xn. Detail of
preparing such triplet data is discussed in our supplemen-
tary material. For three embeddings ra, rp, rn of the images
xa, xp, xn, respectively, the formula of the distance loss is as
follows.

Ld = −z log
(
ξ
)
+ (z − 1) log

(
1− ξ

)
, (4)

where
ξ = γ(∥ ra − rn ∥2 − ∥ ra − rp ∥2), (5)

and

z =

{
1, if dp(xa, xn) > dp(xa, xp)

0, if dp(xa, xn) < dp(xa, xp)
. (6)

Here, γ(.) is the sigmoid function [18], used here to ease the365

severe gradient problem. dp(.) is the PSNR measurement366

[11]; Eq.(6) is used to get the initial knowledge about the367

similarity of image pairs. It indicates which term in Eq.(4)368

will be visible during the training. Therefore, z can be369

treated as an indicator to determine whether xa is similar370

to xn or xp. We note here that using any pixel-level distance371

metric in Eq.(6) could yield an equivalent effect. It is clear372

that Eq.(4) encourages the embedding of xa to be closer to373

xp than to xn. Optimizing these terms boosts the margin be-374

tween distances of negative pairs and distances of positive375

pairs. The effectiveness of this formulation is discussed by376

ablated results in later session A.2.377

4.2 Learning-Based Euclidean metric378

To define the weight of each edge in the complete graph, we379

calculate the distance of all pairs of latent vectors. The dis-380

tance metric used in this manner should satisfy two criteria:381

(1) it can well reflect the distance of images, i.e., a distance in382

low dimensional space should be consistent with the content 383

correlation of images, and (2) not too expensive to reduce 384

the burden when the number of given images is significant. 385

Our early experiments considered five different distance 386

metrics: the Hausdorff distance, Earth Movement Distance 387

(EMD), the LPIPS distance, SSIM, and the Euclidean dis- 388

tance. However, Hausdorff and EMD have a good perfor- 389

mance on specific data, i.e., cartoon characters [3, 26]. LPIPS 390

is an expensive computation metric, it takes approximately 391

five seconds on an image pair. SSIM and Euclidean distance 392

metrics are potential. However, Euclidean metric is the most 393

common use of distance measure and known as simple 394

distance. When data is dense or continuous, this is the 395

best proximity measure. Thus, we consider Euclidean as the 396

baseline in learning the relation of images in our current 397

application. It’s worth noting that directly using pixel-level 398

distance metrics, such as SSIM or Euclidean, without Eq.(4) 399

is not sufficient in our current application. The reason is that 400

we target to explore new transitions on the diverse content 401

frames. Simply employing a plain distance metric without 402

the objective function Ld prevents us to reach this goal. This 403

could be seen in the ablated visualization A.2 404

Instead of directly using Euclidean distance to measure
the metric value between two features, in RSFNet, we apply
deep learning technique to further learn their similarity.
When the self-defined metric space is an Euclidean space,
the metric value between two samples is a distance metric,
which is defined as:

dij(vi, vj) =∥ R(xi)−R(xj) ∥, (7)

where R is our trained RSFNet; xi and xj are the corre- 405

sponding frame of embedding vi and vj , respectively. 406

5 SINGLE-SOURCE DISTILLATION PATH-FINDING 407

In this section, we present our approach of finding the path 408

on the complete graph to construct new sequences. Let Ω be 409

the set of latent vectors vi obtained from our RSFNet and 410

dij be the distance between two latent vectors vi, vj ∈ Ω 411

defined by Eq. (7). We construct a graph G = (V, E) in which 412

each node Vi ∈ V represents a latent vector vi ∈ Ω and the 413

weight of each direct edge eij ∈ E (from Vi to Vj) is assigned 414

by the corresponding distance dij(vi, vj). 415

Once graph G is constructed, our system lets the user 416

choose a node randomly. An expected sequence can be 417

constructed by traversing the graph starting from this node. 418

A possible and straightforward way is finding the shortest 419

path on the graph with the selected node because the edge of 420

a pairwise node reflects their similarity, i.e., if the weight of 421

an edge is smaller, the connected nodes are more similar and 422

vice versa. Hence, this naive strategy is tolerant of plausible 423

sequences if the input clips do not have dense motion and 424

content. 425

The question here is - How do we construct the sequences 426

that are different from those in the input video? Resequencing 427

videos without pre-processing (e.g., extracting objects from 428

the background), we may face a range of challenges in 429

image content (e.g., the video has multiple moving objects, 430

dense motion directions, or with complicated background). 431

Generating new sequences while avoiding flicking artifacts, 432

such a classic shortest path-finding technique by itself is not 433
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tailored. The reason is that the resultant path found by this434

technique, such as [17], tightly reflects the similarity of the435

sequence in the given clip. It may yield a similar sequence436

to the given sequence. Otherwise, it may fall into chaotic437

motion if the clip has dense movements. Yang et al. [26]438

tackle this issue by extracting the cartoon character from the439

image content and using the motion direction feature (MDF)440

to evaluate the gesture dissimilarity. However, they focus on441

the frames that have a single cartoon character. If the frames442

demonstrate the motion of multiple objects, using MDF443

might be insufficient. Recent work by Morace et al. [17] also444

suffers from this issue if there exist dense motion directions445

(Chinese ink in Fig.5-(K)). To overcome these challenges and446

produce new sequences, we propose an algorithm called447

Single-source Distillation Path-Finding (SDPF) to find the path448

when traversing on the graph.449

When designing SDPF, we base on the fact that the450

adjacent frames have to be consistent in content information451

and temporal coherency in a particular clip. Thus, in finding452

a new path that satisfies these two aspects, we consider453

them whenever choosing a node at every step. We call the454

phenomenon, which is caused by missing one of the two455

aspects, as a cold transition. More specifically, we model our456

SDPF to work under the control of two-layer distillation.457

Given a graph and a starting node, the first layer is to458

distill the set of candidates, which are the potential to be459

consistent with the content. Taking this set as input, the460

second layer estimates the plausible motion direction that461

could be generated and distill the candidates on the set that462

are potentially temporally coherent. In the following, we call463

the current node Vc; our SDPF aims to find the adjacent node464

of Vc, denoted as Vc+1. We visualize the difference of Single-465

source shortest PathFinding (SSPF) versus our proposed466

SDPF in Fig.3(a), (b). SSPF chooses only one node, which has467

the shortest cost, to add to the path. In contrast, our SDPF468

considers a number of nodes, e.g., three nodes in this exam-469

ple, which have the cost lower than a designated threshold,470

as the potential candidates in equivalent probability to be471

added to the path.472

There are several benefits of using our SDPF algorithm.473

First, we can explore new paths since we do not strictly474

follow the theory of the shortest path. Second, we can475

control the motion direction to be locally consistent in clip476

segments and globally realistic in the generated clip. Third,477

it is faster than such a greedy strategy. We subsequently de-478

scribe how we model the constraints in our SDPF algorithm.479

The pseudo-code of SDPF is presented in Algorithm 1.480

5.1 Content-aware distillation481

In this layer, we find the set of candidates that have relevant
content to the current node Vc rather than finding the node
that have smallest distance to Vc. Obviously, if Vc+1 is
the node that has the smallest weight to Vc among the
directed nodes of Vc, this may yield the resultant sequences
that are similar to the source sequences. Thus, we find the
candidates that are potential to explore new transitions. This
saves the generated video from flicking artifacts due to the
“cold transition” between them. We construct a set S1 of
candidates that are relevant to Vc as:

S1 = {Vi ∈ G : eci < η; s.t. η =

∑
eij
N
}, (8)

Algorithm 1 SDPF Algorithm

Input: Set of latent vectors {vi}, distance metric {dij}
1: V ← {vi}, E ← {dij};
2: Construct graph G = (V, E);
3: Vo ← user’s selection;
4: Initialize a list P to subsequently push the selected node

to the path;
5: Add Vo to P
6: Vc ← Vo; /* Vc is the node at current state*/

/* Distillation in the first layer*/
7: for each node Vj ∈ G(V − P) do
8: if ecj < η then /* η is defined in Eq.(8)*/
9: Add Vj to S1

10: end if
11: end for

/* Distillation in the second layer */
12: for each node Vk ∈ S1 do
13: if Vc ∈ LMS then
14: S2 = Cd(Vc, Vk) + Ct(Vc, Vk)
15: else
16: S2 = Ct(Vc, Vk)
17: end if
18: end for
19: for each Vi ∈ S2 do
20: Compute possibility Ω for each Vi by Eq.(20);
21: end for
22: Choose Vi by randomly selecting Ω;
23: Add Vi to path P ;
24: Update Vc ← Vi

Output: Sequence of path P

where N is the total number of nodes in the graph G. In this 482

equation, η is the threshold that represents for the mean of 483

the weights in the graph G. By this configuration, an edge 484

has the weight that smaller than η could be considered as a 485

“potential candidate”. It is hypothesized that we set another 486

variable such as top k% of the candidates that have the 487

closest weight to the minimum weight of the graph, the size 488

of S1 is increasing with the total number of frames in the 489

given video. If the clip is short, the size of S1 is small, and 490

thus it might be not sufficient to explore a new path. If the 491

clip is long, the size of S1 accordingly increases, and thus 492

it might include the wrong candidates (i.e., the candidates 493

are not correlated). Therefore, the threshold η < mean(.) is 494

tolerant with different amounts of frames and able to avoid 495

these phenomena. 496

With Eq.(8), we can eliminate the nodes that have low 497

reliability and drive our focus on the nodes that are highly 498

potential to be content correlation. Each element of S1 repre- 499

sents for a possible way that we can explore from Vc without 500

suffering from cold transition. Note that the size of S1 varies 501

along with Vc at each iteration. And in S1, the nodes are 502

treated equivalently, i.e., the probability of choosing a node 503

is independent with the edge weight. 504

5.2 Motion direction-aware distillation 505

Having computed the set S1, the next question is - which 506

candidates in this set can yield a plausible motion direction? 507

Note that here “plausible” refers to both backward motions, 508
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forward motions, or any movement but avoiding the results509

from the flip-flop and jumping phenomena. To do this, we510

propose to our SDPF algorithm two constraints: Directional511

distillation and Coherent distillation. Detail of each constraint512

is described as follows.513

5.2.1 Directional distillation514

This constraint, denoted as Cd, is proposed to control the515

consistency of motion direction. To achieve this, linear mo-516

tion segment (LMS) is the factor we consider here. LMS is517

ubiquitous in real-world videos. Readers can see the visual518

example of LMS here 1. Resequencing such videos may fall519

into two kinds of motion-noise: (1) flip-flop phenomenon520

due to the LMS-frame is not recognized, causing inconsis-521

tent direction, and (2) abnormal motion since both backward522

and forward motions yield smooth transitions. Therefore,523

there is a need to recognize the major motion direction in524

frames as well as detect the LMS to avoid these motion-525

noises.526

Fig. 3: Visualization of SSPF (a) and SDPF (b). (c) is visualiza-
tion of motion tendency of each frame (i.e., blue arrow). The
frames in green rectangle belong to an LMS, i.e., the adjacent
frames satisfy Eq.(11). (d) is visual constraint Cd in Eq.(12), here
the node outlined by double circle means it is an LMS-frame.

Let X = {xa}na=0 be the sequence of frames xa in
the given video, n is the number of frames, we first cal-
culate the optical flow [24] of X and denote this set as
Y = {Fa→a+1}n−1

a=0 , here Fa→a+1 is the optical flow of frame
xa to xa+1. To focus on drastic changes in the optical flow,
we normalize each element in Y as follows:

N̂ij =
∥ Fij ∥2 −minij ∥ Fij ∥2

maxij ∥ Fij ∥2 −minij ∥ Fij ∥2
. (9)

We denote this set as Ŷ = {N̂a}n−1
a=0 . Video frames may

have various motions, e.g., motions of main object(s) or
light motions of background objects. To recognize the major
motion direction in frames, we mask on each frame a value
called “motion tendency” (T ), as shown in Fig.3(c). This value
represents for the motion direction that dominates in a
frame, which is formulated by average normalized vectors
of partial optical flow:

T = ∠

(∑
N̂ij

n×m

)
, s.t., N̂ij > σ

Fij

∥ Fij ∥2
, (10)

where m,n is the width and height of frames, respectively.527

Threshold σ is set to 0.5 in our experiments to ensure only528

huge changes to be concentrated.529

1. http://graphics.csie.ncku.edu.tw/SDPF/LMS.mp4

Thereafter, we base on motion tendency in frames to
detect LMS-frame, the frame that belongs to an LMS. The
definition of an LMS-frame is expressed as:

∃j, k ∈ N : j ≤ i ≤ j + k, k > 2, s.t. |Tj − Tl| ≤ δ, (11)

for all l ∈ [j, j+k]. In our experiments, we compute motion 530

tendency of frames and mask them with motion tendency 531

value if the frames belong to LMS prior of path-finding 532

manner, and threshold δ is set to π
4 . 533

Finally, we configure the constraint for directional distil-
lation as:

Cd =
∣∣Tc−Tk

∣∣ ≤ ξ, if xc ∈ LMS&∃Vk ∈ S1 s.t., xk ∈ LMS,
(12)

where Tc, Tk is the motion tendency of the corresponding 534

frame xc, xk of the node Vc, Vk, respectively, k ∈ [1 . . . n1], 535

and ξ is set to π
3 . Here, n1 is the size of set S1. The condition 536

in Eq.(12) reveals that constraint Cd only works if the 537

corresponding frame of Vc is an LMS-frame and there exist 538

an LMS-frame in S1. Otherwise, we skip this constraint. The 539

visual sample can be found in Fig.3(d). We can see that, Vc 540

and two of its three candidates are LMS-frames. In this case, 541

Eq.(12) is used to avoid flip-flop phenomenon. We analyze 542

the effectiveness of this constraint with ablated results in 543

session A.3.1. 544

5.2.2 Coherent distillation 545

The distillation in this layer is proposed to maintain the 546

temporal coherency in generated sequences. Yang et al. [26] 547

extract cartoon characters from frames and compute the 548

angle of two motion direction features of the characters to 549

define the differences of motions. In the cases that video 550

frames consists of multiple moving objects, this technique 551

is not practical. We instead propose a Pixel-wised Motion 552

Similarity Measurement (PMSM) to shoulder the smoothness 553

of generated sequences. 554

As named, PMSM measures the pixel-wise motion sim- 555

ilarity between two frames. To get knowledge of motion 556

in frames, inspired by [12], we use optical flow as the 557

motion feature. Thus, a possible and straightforward way 558

we can measure the motion differences is using optical flow 559

directly. Nonetheless, as aforementioned, various motions 560

of multiple objects in frames cause challenging to define the 561

consistency between them. We therefore learn the motion 562

feature by mapping optical flow domain to image domain. 563

In other words, given two frames, we use the corresponding 564

the optical flow of these frames to construct the instance 565

in image domain, dubbed pseudo-image. A pseudo-image 566

is made by the major motions in the corresponding frame 567

and the correlated motion of frame-pair. We finally calculate 568

the distance of pseudo-images to measure how smooth the 569

motion changes in a transition. A smaller PMSM reveals a 570

smooth transition. Consequently, we use PMSM to configure 571

the constraint in this distillation layer, so-called Ct, to con- 572

trol the motion in adjacent frames not to change frequently 573

or drastically. 574

Fig.4 outlines the flowchart of PMSM. For each node Vk 575

in the set S1, we treat it as a hypothesized adjacent node 576

of Vc. And xc, xk respectively are the corresponding frames 577

of node Vc, Vk. The smoothness of transition from frame xc 578

to xk is now defined by the motion distance of two optical 579

http://graphics.csie.ncku.edu.tw/SDPF/LMS.mp4
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flows FC and FK, where FC is the optical flow of frame xc to580

its backward adjacent frame in the input video. The reason581

for the order of this calculation is explained in detail in our582

supplementary. Similarly, FK is the one of xk.583

With two optical flows FC and FK, we first normalize
their magnitude by Eq.(9), denoted as F̂C, F̂K, respectively.
We then define a map of significant motions with:

Mij = max(F̂Cij , F̂Kij), (13)

with i = 0 . . .W , j = 0 . . . H ; W,H is the width and584

height of the frame, respectively. The map M represents585

for the correlation of major motions in frame-pair. We get586

these information to learn how to control the pixel-wise587

consistency in the pseudo-images.

Fig. 4: Flowchart of our proposed PMSM.
588

In each normalized optical flow F̂C, F̂K, we count the589

number of elements that are larger than a threshold µ. We590

denote as E = {e1, . . . , eNe
}. Note that the size of set E591

varies along F̂C or F̂K. Since we only use Ne optical flows in592

F̂ to model Ct, value of Ne should be large enough. A small593

Ne will decrease the difference between optical flows. This594

yields to that we may fail to define the difference correctly.595

Therefore, if Ne is smaller than a threshold, i.e., 224 is the596

height and width of frames, we will cut µ in a half and597

compute µ again to ensure Ne is sufficient. Initially, we set598

µ to 1
2 .599

Thereafter, we rely on M, E to map back to the input
optical flow to construct pseudo-image. More specifically,
∀i, j in optical flow Fij = (xij , yij), pseudo-image Xp ∈
RH×W×3 is expressed as:

Xp
ij =

{( xij

2∥Fij∥2
+ 1

2 ,
yij

2∥Fij∥2
+ 1

2 , 1
)
, ifM≥ ek(

1
2 ,

1
2 , 0
)
, ifM < ek

, (14)

where ek is the largest element of E in M. In Eq.(14),600

if the parameters are M, Ec, and F̂C, we can construct601

pseudo-image of node Vc, denoted as Xp
c . Similarly, we can602

get the pseudo-image Xp
k from those of node Vk. The first603

two channels in Xp are the unit vector of F with constant604

translation, in which unit vector provides only direction605

information. The constant translation makes the value to be606

in range of [0, 1] without any computation error. The third607

channel is used to enlarge the difference between the feature608

point and other pixels.609

At the end, motion distance of two optical flows is
formulated as the similarity of the corresponding pseudo-
images:

δ(FC,FK) = − ∥ R(Xp
c)−R(X

p
k) ∥2, (15)

where R(.) indicates our trained RSFNet. In essence,610

pseudo-images have different appearance compared to611

video frames, i.e., pixel value represents for the motion612

intensity of objects in the corresponding frame. Encoding 613

such pseudo-image serves the knowledge of the regions that 614

have considerable motions. It’s worth noting that motion 615

distance of two frames in Eq.(15) also could be expressed 616

by the similarity of pseudo-images. However, to make δ(.) 617

stable when working on diverse motions, we feed them to 618

RSFNet. Although RSFNet is trained on video frames data, 619

RSFNet on the other hand learn a similarity function to see 620

if two images are the same. This enables to discriminate 621

new classes of data without training the network again. We 622

give out discussion and visualization on these effects in the 623

supplementary file. 624

Equation (15) represents the relation adjacent frames in
term of motion change degree. For each node Vk in the set
S1, k = 0, . . . , n1, we define constraint Ct as:

δ(FC,FK) ≤ ω, (16)

where ω is set by:

ω =

{
1
n1

∑
k∈S1

δ(FC,FK), if n1 ≥ 2

min
(
δ(FC,A1), δ(FC,A2)

)
, if n1 < 2

, (17)

here A1 and A2 are the augment form of FC, i.e., A1 is the 625

rotation of FC with angle 1
2π and A2 is the rotation of FC 626

with angle − 1
2π. We set ω as the average difference of S1 627

is intuitive. However, the average will loss its function if 628

the number elements in S1 is less than 2. Therefore, we 629

calculate the difference between FC and the rotation of itself 630

to ensure the direction of the motion is sufficiently smooth. 631

We analyze the effectiveness of this constraint by the ablated 632

results in later session A.3.2. 633

In summary, the constraint model of distillation in this
layer can be factorized as:

Cd

(
Vc, Vk

)
+Ct

(
Vc, Vk

)
, (18)

where Vk ∈ S1. In the cases that Vc does not belong to LMS
or there does not exist a candidate in S1 that belongs to LMS,
the first factor in this equation is omitted. In other words,
we define the candidates that we can add to the path as:

S2 =

{
Cd

(
Vc, Vk

)
+Ct

(
Vc, Vk

)
, if Vc ∈ LMS

Ct

(
Vc, Vk

)
, otherwise

(19)

5.2.3 Final selection 634

Thus far, the candidates in S2 are the possible nodes we
can choose to explore. In the cases that S2 is empty, the
algorithm will early stop to maintain the quality of resultant
clips. If S2 > 1, we adopt Softmax parameterization protocol
[8] to converge the selection in each iteration. Let δj be the
motion distance from a node Vj ∈ S2 to Vc, we parameterize
the possibility of choosing Vj as:

Ω(Vj |S2) =
exp(δj)∑n2

i=1 exp(δi)
, (20)

where n2 denotes the number of candidates in S2, δi is the 635

motion distance of node Vi and Vc. This equation is used 636

to compute the possibility of a vertex to be chosen. Then, 637

we select the adjacent node of Vc according to randomly 638

choose the possibility Ω. It’s worth pointing that choosing 639

any candidates in S2 is sufficient to guarantee smooth and 640

plausible sequence. However, we aim to explore the novel 641
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path, we thus utilize Eq.(20) to increase the possibility of642

sequencing novelty rather than choosing the smallest edge-643

weight node. Furthermore, this strategy enables users to644

have more predictable results. The efficiency of this design645

is visualized by video results in the supplementary video.646

6 EXPERIMENTAL RESULTS647

6.1 Implementation Details648

We implemented our proposed resequencing system in649

Tensorflow [1]. All experiments were performed on a PC650

equipped with Intel Core i7-770 CPU, 16GB RAM and an651

NVIDIA GTX 1070 GPU. The User Interface (UI) is devel-652

oped by QT toolkit [4]. We train our model with patch size653

of 8. Adam optimizer [15] is used. Early-stopping with 10654

epochs patience is used to prevent over-fitting. To reach the655

minimum of loss, we cut the learning rate in half when the656

validation loss does not improve in 3 epochs.657

6.2 Our results and discussion658

Fig.5 exhibits the frames of some typical videos in our659

experiments. Readers are encouraged to explore our project660

website2 to access more visual results. The aspects that661

make our results and system advance prior works could662

be summarized as follows.663

We are capable of resequencing both cartoons (Fig.5-(A)664

to (G)) and natural videos (Fig.5-(H) to (L)). Cartoon images665

often consist of sharp lines, flat backgrounds, and smooth666

color blocks, while natural images contain more complex667

and local textures [2]. This ability is adopted by benefiting of668

the proposed RSFNet and the distance loss. RSFNet boosts669

the performance of our system in understanding high-level670

features of natural images; meanwhile, the distance loss671

facilitates the accuracy of image feature-pairs similarity.672

We are capable of resequencing the clips, which consist673

of complex motions, i.e., the motion of multiple objects or674

dense motion directions. This aspect is adopted by the Mo-675

tion Direction-Aware Distillation in our SDPF algorithm. As676

examples, let us take Fig.5-(F) and Fig.5-(G). The challenge677

here is that both cases consists of multiple simultaneous678

motions. In Fig.5-(G), we have to control the consistency679

of movements of two objects: 1) the direction when the bear680

raises his hand to hold the flower and rotates it, and 2) the681

other flower waves with the wind. Meanwhile, in Fig.5-(F),682

such a resequenced clip should maintain the consistency of683

the movements of the lady, baby, the car, and the windshield684

wipers. Nevertheless, we can generate appealing results,685

i.e., we re-sequence the new clips without damaging the686

coherency and flicking artifacts. The challenge also falls in687

the natural scenes here. These samples encompass linear688

motion segments, which cause resultant sequences to be a689

flip-flop phenomenon. Thanks to the constraints embedded690

in our SDPF, we revolve this challenge and produce smooth691

transitions.692

Another interesting aspect of our system is the ability693

to produce the sequences which are different to those in694

the given clip. This aspect is adopted by the Content-Aware695

Distillation in our SDPF Algorithm. More specifically, we696

2. http://graphics.csie.ncku.edu.tw/SDPF

visualize the filmstrips of two paths which are from the 697

original video and our result in Fig.6. We can see with the 698

same image gallery, but our sequence is quite different from 699

those in the input video. By observing this resequencing 700

result, we can see the transition of each single frame pair is 701

plausible. The full clips can be seen in our supplementary 702

videos. 703

In addition, we can generate different sequences accord- 704

ing to the starting frame, which the user selects. This aspect 705

enables users to obtain various predictable results. Fig.6 is a 706

sample. More results can be seen on our project website. By 707

observing the filmstrips in the figure, the sequence gener- 708

ated by our method is not only relatively different from the 709

source sequence but also smooth in transitions. 710

Fig. 5: Frames in some of the videos we use to evaluate our
method.

Fig. 6: Demonstrates the differences in the sequence generated
by our method versus those in the original video. Shown in this
figure are the filmstrips from original video (first row) and our
rendered video (second row).

Fig. 7: Visualizes the heatmap of differences of frames.

6.3 Evaluation Metrics 711

To evaluate the performance of the proposed method, we 712

measure the generated sequences with three aspects: (1) the 713

stability of videos, (2) the difference degree of generated 714

sequences, and (3) human perception on our results. In 715

this evaluation manner, we totally use 12 videos (shown 716

in Fig.5), which are rendered from our system. Then, we 717

synthesize them for the below evaluation metrics. 718

6.3.1 E.1. Stability measurement 719

As the generated videos are explored according to the user’s 720

selection of the starting frame, they may not have the 721

http://graphics.csie.ncku.edu.tw/SDPF/
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ground truth. To measure the stability of rendered videos,722

we synthesize 12 videos by our method and the correspond-723

ing source video; and measure the differences between724

adjacent frames. The reason is that the source videos by725

themselves are temporally coherent; our results are rendered726

from the same image set with them but probably in different727

orders. Thus, we treat them as the standard to judge the728

stability degree of the results.729

Given two adjacent frames Ft−1 and Ft, difference of
them is factorized as:

Dt→t−1 =∥ Ft − Ft−1 ∥, (21)

here t ∈ [0 . . . Ns], Ns is the total frames in the video.730

After that, we calculate the mean (MD) of Dt→t−1, and we731

compare them against those in the source video. On each732

single pair, Dt→t−1 in our result might be higher than those733

in the ground truth, but it should be at an acceptable rate734

to guarantee there does not exist notable flicking artifact.735

This eventually affects the quality of the entire rendered736

clip. Therefore, we base on MD to judge the stable quality737

of the results, i.e., the more tightly asymptotic to those in738

the source is better. We visualize an example of this manner739

in Fig.7. In this visualization, we choose a mutual frame740

between our rendered clip and the corresponding source741

video (i.e., frame 9). We can observe that the adjacent frames742

of frame 9 in the source (i.e., frame 11) and the adjacent743

candidates (i.e., frames 16 and 34) are in the same motion744

direction, but the heatmaps show that D9→16 is closer to745

D9→11 than D9→34. This result reveals that the transition746

from frame 9 to 16 is better among two potential candidates747

than to frame 34, i.e., there could be a noticeable jumping748

artifact in the transition from frame 9 to 34 in this context.749

The average of MD in this experiment is reported in Fig.8-750

(a). The analysis shows that the stable rates of our rendered751

clips are relatively close to those in the source video. There752

are three cases (e.g., clip A, C, and F) in which the stable753

rates are relatively higher than the source. However, they754

are still at acceptable rates.755

6.3.2 E.2. Degree of differences756

It is difficult to find a standard objective metric to measure757

the differences of the generated sequences compared to758

the input ones. Therefore, in this regard, we elaborate as759

follows.760

We evaluate how different the rendered clips compared
to the ground-truth by calculating the overlapping rate
between them. To do this, we follow the well-known F-
measure [16] as the evaluation metric. Previous works use
this metric to measure the coherency of the rendered videos.
The higher F-measure is, the higher the coherent rate will
be. Reversely, our purpose is to measure how different they
are. To avoid confusion, we denote this value as ∆o. As a
result, the smaller ∆o represents the more difference. Note
that the clips generated by our system may be of different
lengths and also less than those of the source clip. Let G be
the generated clip and T be the corresponding source clip,
the precision P and recall R is defined based on the amount
of temporal overlap between G and T , which are expressed
as:

P =
δ

dG
and R =

δ

dT
, (22)

where δ is the duration of overlap between G and T ; dG
and dT denotes the duration of clip G and T , respectively.
Finally, ∆o is formulated as:

∆o =
2× P ×R

P +R
× 100%, (23)

Quantitative results on this aspect are shown in Fig.8-(b). 761

We can see that ∆o of the testing data are relatively different 762

from the ground-truth, especially on the clip D-Frog dance. 763

It is worth pointing that the significant difference in this 764

manner does not mean the clip is not stable. Inferring this 765

clip in Fig.8-(a), the results reveal that the sequence this 766

clip is still stable. There are three cases (e.g., clip H, I, and 767

J) where the different rate is low. This implies that these 768

results are not significantly different with the ground-truth. 769

The reason is that these cases consist of linear motion in 770

the entire video. Therefore, our method can only generate 771

the smooth sequence as the ground-truth in such cases. In 772

addition to these metrics, we conduct a user study to further 773

learn about the human preferences on the visual quality 774

of our results. Detail of the user study is described in the 775

supplementary file. 776

In summary, if we denote the total number of linear 777

motion segment in a certain source video is L, the quality on 778

these two aspects of the rendered clips is defined as follows. 779

The stability (MD) is covariate with L and the differences of 780

sequence (∆o) is inverse with L. 781

6.3.3 E.3. Human perception-based evaluation 782

In addition to the above measurements, we further use 783

human visual perception on the sequences generated by 784

our method. Seven testing clips with small ∆o are used 785

in this evaluation. We first collect two summarization per 786

sequence. Then we recruit a group of 11 users rank (in five 787

levels) the summarization based on how well they describe 788

the clip according to two questions. The detail of this study 789

is described in the supplementary file. 790

For each question, let s be the score if the ith user rates
for the corresponding level of s and Ns be the number of
rating of s. We use the following equation to compute the
rate of each summarization to each question, which reflects
the users’ opinions:

RA =

( 5∑
s=1

s×Ns

)
/(5× 11) (24)

We then average RA of two summarizations for each se- 791

quence to define the users’ opinion. Fig.8-(c) shows the 792

statistics of users’ preference. We can see that the scores of 793

two questions are not extremely high but all of them are 794

over the average degree (i.e., in range of 0.62 - 0.79, and 64% 795

is greater than 0.7). The results reveal that most users think 796

the sequences generated by our work can tell meaningful 797

stories. 798

6.4 Comparisons to prior works 799

We compare our system with some seminal works in this 800

domain, including de Juan and Bodenheimer [3], Yu et al. 801

[28], Yang et al. [26], and Morace et al. [17]. The different 802
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Fig. 8: Analysis results on (a) stability, (b) difference degree, and (c) human perception on our resequencing results.

aspects in comparisons are summarized in Table 1. In gen-803

eral, the early works [3, 28, 26] share the same two short-804

comings: first, their mutual focus is the cartoon characters,805

and second, they need to do a pre-processing to extract the806

cartoon characters from the frames. Manifold method [17]807

is more general, i.e., it does not need such a pre-processing808

and thus, it is adaptable to cartoon scenes. However, they do809

not consider the motion direction as the other competitors810

[3, 28, 26] do, clips with dense motion directions are the811

major limitation in their system. In shape contrast, our812

approach has three major advantages. First, our system813

performs well on arbitrary input video scenes. Second, our814

system does not need any pre-processing. And third, our815

system is able to produce novel animations compared with816

those in the given video. The remainder of this subsection817

describes detailed comparison on each single competitor.818

Fig.9 shows a qualitative comparison between our re-819

sults and those in de Juan and Bodenheimer [3]. The pair820

of frames in (b) is mentioned as a bad transition in [3].821

As a result, they have to insert inbetweens to obtain good822

transition. In contrast, our method automatically defines the823

adjacent frame with a smooth transition without refinement.824

It is observed that our transition in (a) is more plausible825

compared to (b).826

Similar to our approach, Yang et al. [26] consider motion827

direction in transitions. The significant difference here is828

that they focus on cartoon characters. Gesture of charac-829

ters needs to be extracted to define the similarity between830

frames (see Fig.7 in the supplementary file). Moreover, the831

motion direction feature (MDF) cannot accurately describe832

the gesture of a cartoon character. Thus, their approach is833

not effective to explore the challenging input. Reversely,834

our system gets knowledge from self-defined network to835

learn the similarity of images in terms of content correlation836

and embeds optical flow to maintain consistency in motion837

directions. Therefore, we advance not only in arbitrary input838

but also in accuracy.839

Fig.10 shows the comparison with Morace et al. [17]. The840

source clip of this example consists of dense motions of fish841

and chinese ink, in which there exist several linear motion842

segments. As in our early discussion, since Morace et al. [17]843

do not consider the motion direction, there is significant844

abrupt motion in the regions masked in red rectangles.845

Fortunately, thanks to the constraints in our scheme, we846

resolve this phenomenon and obtain smooth transitions in847

the generated sequence. Another aspect makes [17]’s system848

suffer some limitations (i.e., image content is complex) is that849

they use LPIPS metric to define the similarity of image pairs.850

This metric is learned by training a “small network” which851

is designed to predict perceptual judgement from distance 852

pair and not originally designed for resequencing applica- 853

tion. Besides, it takes approximately 5 seconds to compute 854

on a pair. Therefore, the performance of [17] heavily relies 855

on those in this model. 856

TABLE 1: Comparisons between our method and prior works

Methods Pre-processing New sequence? Type of data

GCCS [3] Yes No Cartoon characters

RCCS [26] Yes No Cartoon characters

semi-MSL [28] Yes No Cartoon characters

Manifold [17] No No Cartoon scenes

Our method No Yes Arbitrary scenes

Fig. 9: Visualizes the differences in transition between our
method (a) and [3] (b). Photos in (b) are obtained from [3].

Fig. 10: Comparisons with Manifold sequence [17].

Fig. 11: Second row is the Grad-CAM visualization of the
backbone VGG-19 (left) and our RSFNet (right).

Apart from the above visual comparisons, we quantita- 857

tively compare the quality of our results against those of 858

prior work by two metrics MD and ∆o. We also use the 859

data in Fig.5 in this comparison. And our competitor is 860

Manifold [17] since the other three methods [3, 26, 28] focus 861

on cartoon characters, and their results are not available 862
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for a fair comparison. Meanwhile, Manifold [17]’s focus is863

comparable to ours, and the source code is provided by864

the authors. Table 2 presents the statistic results in this865

comparison. We can see that our method outperforms on866

the average of stability score. In terms of ∆o, Manifold and867

ours have the comparable scores. However, we can see that868

their values of ∆o are relatively equal, and the score in869

cartoon data (A-G) are higher than natural scenes (H-K).870

When we inspect MD of data A-G, they are not at good871

stability degree. This reveals that Morace et al. [17] fail to872

either generate new sequences for cartoon data or produce873

smooth sequences with linear motion in natural scene data.874

Conversely, in our method, smaller ∆o on cartoon data875

implies that it can explore new sequences. For the natural876

scene data with linear motion, higher ∆o side by side with877

smaller MD reveal that it can tolerate to avoid flip-flop878

phenomenon in such data.879

6.5 Ablation Study880

6.5.1 A.1. Verify the effectiveness of RSFNet881

Our RSFNet is structured in the integration of a backbone882

and the proposed RFF module. Without RFF module, gen-883

erated sequences include inconsistencies due to the lack884

of information on the features that are extracted from the885

backbone. We demonstrate the effectiveness of RFF module886

by removing it from our training. We show these abla-887

tion analyses in Fig.11. Here, we visualize the Grad-CAMs888

[22] of those obtained from our RSFNet with and without889

RFF module. The results show that with FRR module, our890

RSFNet has much larger attended regions. This enables our891

system to have more predictable results.892

6.5.2 A.2. Study on the impact of distance metric893

Performance of our resequencing system is affected by the894

feature correlation calculation. To analyze the influence of895

feature correlation on the quality of rendered sequences,896

we change the model to calculate the distance metric by a897

pure Euclidean distance calculation. That is, we remove the898

distance loss (e.g., Eq. (4)) and use the Euclidean distance899

to measure the correlation in pairs of latent vectors. Fig.12900

shows the contrast results. It is observed that Euclidean dis-901

tance metric performs the correlation of the neighbors well.902

For example, we inspect on frame 5, which is highlighted903

in green rectangle. We can see that most similar frames are904

adjacent frames of this frame (e.g., frame 4, 5, 7). Meanwhile,905

our distance is able to capture more (e.g., frame 1, 2, 3,906

4, 5, 12, 20). Therefore, if we directly use Euclidean as the907

distance metric, it prevents us from exploring new paths.908

6.5.3 A.3. Study on constraints in SDPF909

A.3.1. Directional distillation. This constraint is configured910

to detect the motion’s property of a certain frame. As we911

mentioned in previous session, the “property” here is the912

linear motion. To verify the impact of this constraint (Cd)913

in the results, we remove it from the full procedure. That914

is, Cd is omitted from Eq.(18). Fig.13 shows the results of915

ablation analysis. In this example, we deliberately choose a916

frame (i.e., frame 187) that belongs to such a linear motion917

segment to clearly reveal the influence of this constraint.918

After the first distillation, we define five candidates that919

have feature correlation to frame 187. Among them, frame 920

152 does not belong to LMS, meanwhile, the remainders 921

are. In the remained candidates, frame 121 and 144 are in 922

reverse direction motion with frame 187, and frame 193 923

is the same direction with frame 187. Without constraint 924

Cd, frame 152 and 135 are selected as being adjacent with 925

frame 187. Obviously, the flip-flop phenomenon will occur. 926

Reversely, with constraint Cd, frame 193 is chosen. This 927

result yields a reasonable transition. 928

TABLE 2: Comparisons on the quality of results

Methods Ground-truth Morace et al. [17] Our method

Testing data MD MD ∆o MD ∆o

A- Lovebird 0.037 0.056 0.78 0.047 0.67

B- Daffy Duck 0.048 0.067 0.84 0.052 0.64

C- Hippo funk 0.046 0.062 0.81 0.058 0.63

D- Frog dance 0.048 0.079 0.77 0.054 0.59

E- Michigan 0.060 0.062 0.79 0.065 0.64

F- Umbrella 0.059 0.083 0.69 0.067 0.72

G- Little doctor 0.048 0.073 0.73 0.051 0.70

H- Basket ball 0.047 0.081 0.58 0.049 0.88

I- River flow 0.051 0.075 0.75 0.052 0.92

J- Harry Porter 0.053 0.078 0.68 0.056 0.87

K- Chinese ink 0.049 0.052 0.73 0.056 0.78

L- Movie Scene 0.058 0.065 0.74 0.060 0.79

Average 0.050 0.069 0.74 0.055 0.73

Fig. 12: Zoom-in the heat map of distance metric calculated
by Euclidean distance (a) and our learning-based Euclidean
distance (b). The experiment is conducted on segment with 20
frames of Daffy Duck clips. Entire heat maps could be seen in
Fig.6 in the supplementary file.

Fig. 13: Ablated results of constraint Cd. Five candidates in
S1 are correlated with frame 187. Because frame 187 belongs
to LMS, if S1 has LMS-frames, they will be considered to
guarantee the coherency with frame 187. With Ct, frame 193
is chosen. This is an LMS-frame, we can see the transition is
visual smooth. In the contrast case, both frame 152 and 135
do not belong to LMS, exploring to these frames may cause
artifacts.
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A.3.2. Coherent distillation. Without this constraint, the929

motion in generated sequences can be realistic but may fail930

in temporal coherence. We measure this effect quantitatively931

by removing this constraint (i.e., Ct) from our proposed pro-932

cedure. Fig.14 visualizes the ablated results in this aspect. It933

is observed that without Ct, the adjacent frame of frame 143934

is frame 172. In the contrast case, it is frame 149. Although935

both frame 149 and 172 are the same direction motion with936

frame 143, the heat maps reveal that the differences from937

frame 143 to 172 is significant. This is the reason that causes938

the jumping transition in the rendered clips without Ct.939

Fig. 14: Ablated results of constraint Ct

TABLE 3: Analysis of the quality on ablated results

Method MD ∆o

Ground-truth 0.0535 1

w/o Ct 0.118 0.783

w/o Cd 0.079 0.827

w/o RSFNet 0.082 0.731

w/o Ld 0.281 0.816

Full configure 0.0648 0.706

In summary, we verify the effectiveness of RSFNet, dis-940

tance loss, and two constraints (Cd, Ct) by testing on 12941

videos in Fig.5. The analysis is shown in Table 3. From these942

results, we can conclude that the each constraint plays an943

important role for the stability of the rendered clips; the944

distance metric and RSFNet affect to the ability in exploring945

new sequences. Full configuration guarantees better quality946

results.947

6.6 Limitations948

In the cases that the input videos consist of subtle motion949

of landscape scenes (see the visualized sample here3), our950

method may not perform well. The failure phenomenon951

in such data is that the resultant sequence is quite short,952

i.e., approximately 20% of the total number of frames in the953

source video. We note here that these results are still smooth.954

The reason is our SDPF utilizes the temporal coherency or955

the velocity of motion in the source video to estimate the956

adjacent frame in each single pair of frames. In such subtle957

motion, the differences of the adjacent frames are small and958

the motion is looped. Therefore, our SDPF will early stop if959

the changes are relatively large to avoid cold transitions.960

7 CONCLUSION961

We propose a framework to create new animations from962

cartoon and natural videos with plausible smooth motion.963

We demonstrate that our novel path finding algorithm SDPF964

3. http://graphics.csie.ncku.edu.tw/SDPF/Failure.mp4

is especially useful to create the novel animations and 965

control the consistency in generated clips. This gives our 966

system the capability of resequencing various video con- 967

tents with flexible sequences. We perceive that our system, 968

on the one hand, will be useful as an aid to charge with 969

generating new art in animation video, on the other hand, 970

allows ordinary users with minimal expertise to explore 971

compelling animations by reusing the existing video frames. 972

Our results and evaluations show that the proposed scheme 973

substantially advances prior works. For the drawback we 974

mentioned in our limitation session, we plan to investigate 975

such techniques to detect the bad transitions in the initial 976

sequence and make it smooth by a novel algorithm rather 977

than early stopping. Besides, this could be a possibility 978

to develop a GAN-based network architecture to produce 979

new images from existing image collection, and increase the 980

diversity of the results in the near future. 981

ACKNOWLEDGEMENTS 982

We thank the reviewers for their insightful comments and 983

suggestions. This work was supported in part by the Na- 984

tional Science and Technology Council (under nos. 111-2221- 985

E-006 -112 -MY3 and 110-2221-E-006-135-MY3), Republic of 986

China (ROC), Taiwan. 987

REFERENCES 988

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, 989

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, 990

et al. Tensorflow: A system for large-scale machine 991

learning. 992

[2] Y. Chen, Y. Zhao, S. Li, W. Zuo, W. Jia, and X. Liu. 993

Blind quality assessment for cartoon images. IEEE 994

Transactions on Circuits and Systems for Video Technology, 995

30(9):3282–3288, 2019. 996

[3] C. de Juan and B. Bodenheimer. Cartoon textures. In 997

Proceedings of the 2004 ACM SIGGRAPH/Eurographics 998

symposium on Computer animation, pages 267–276, 2004. 999

[4] E. Eng. Qt gui toolkit: Porting graphics to multiple 1000

platforms using a gui toolkit. Linux Journal, 1996(31es): 1001

2–es, 1996. 1002

[5] O. Fried, S. Avidan, and D. Cohen-Or. Patch2vec: 1003

Globally consistent image patch representation. In 1004

Computer Graphics Forum, volume 36, pages 183–194. 1005

Wiley Online Library, 2017. 1006

[6] A. Gammerman, V. Vovk, and V. Vapnik. Learning by 1007

transduction. arXiv preprint arXiv:1301.7375, 2013. 1008

[7] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style 1009

transfer using convolutional neural networks. In Pro- 1010

ceedings of the IEEE conference on computer vision and 1011

pattern recognition, pages 2414–2423, 2016. 1012

[8] I. Goodfellow, Y. Bengio, and A. Courville. Deep 1013

feedforward networks. Deep learning, (1), 2016. 1014

[9] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings 1015

in deep residual networks. In European conference on 1016

computer vision, pages 630–645. Springer, 2016. 1017

[10] D. Holden, J. Saito, T. Komura, and T. Joyce. Learning 1018

motion manifolds with convolutional autoencoders. In 1019

SIGGRAPH Asia 2015 Technical Briefs, pages 1–4. 2015. 1020

http://graphics.csie.ncku.edu.tw/SDPF/Failure.mp4


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[11] A. Hore and D. Ziou. Image quality metrics: Psnr vs.1021

ssim. In 2010 20th international conference on pattern1022

recognition, pages 2366–2369. IEEE, 2010.1023

[12] Y. Jiao, G. Shi, and T. D. Tran. Optical flow estimation1024

via motion feature recovery. In 2021 IEEE International1025

Conference on Image Processing (ICIP), pages 2558–2562.1026

IEEE, 2021.1027

[13] L. P. Kaelbling, M. L. Littman, and A. W. Moore.1028

Reinforcement learning: A survey. Journal of artificial1029

intelligence research, 4:237–285, 1996.1030

[14] A. Khan and A. Storkey. Hamiltonian operator disen-1031

tanglement of content and motion in image sequences.1032

arXiv preprint arXiv:2112.01641, 2021.1033

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic1034

optimization. arXiv preprint arXiv:1412.6980, 2014.1035

[16] B. Mahasseni, M. Lam, and S. Todorovic. Unsupervised1036

video summarization with adversarial lstm networks.1037

In Proceedings of the IEEE conference on Computer Vision1038

and Pattern Recognition, pages 202–211, 2017.1039

[17] C. C. Morace, T.-N.-H. Le, S.-Y. Yao, S.-W. Zhang, and1040

T.-Y. Lee. Learning a perceptual manifold with deep1041

features for animation video resequencing. Multimedia1042

Tools and Applications, pages 1–21, 2022.1043

[18] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Mar-1044

shall. Activation functions: Comparison of trends in1045

practice and research for deep learning. arXiv preprint1046

arXiv:1811.03378, 2018.1047

[19] M. Osadchy, Y. Le Cun, and M. L. Miller. Synergistic1048

face detection and pose estimation with energy-based1049

models. Journal of Machine Learning Research, 8(5), 2007.1050
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