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Abstract—In this paper, we propose a novel vector field, called a camera-sampling field, to represent the sampling density distribution

of a pinhole camera. We give the derivation and discuss some essential properties of the camera-sampling field, including flux,

divergence, curl, gradient, level surface, and sampling patterns. This vector field reveals camera-sampling concisely and facilitates

camera sampling analysis. The usage for this vector field in several computer graphics applications is introduced, such as determining

the splat kernel for image-based rendering, texture filtering, mipmap level selection, level transition criteria for LOD, and LDI-

construction.

Index Terms—Camera-sampling field, image-based rendering (IBR), layered depth image (LDI), level of detail (LOD), splatting.
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1 INTRODUCTION

CONVENTIONALLY, the term “camera model” in computer
graphics and computer vision refers to a perspective

projection matrix that maps a 3D world space onto a
2D image space. This model has worked very successfully
in many domains relating directly to perspective geometry.
In computer graphics, we use it to render a scene onto an
image. In computer vision, it is used to derive many
perspective projection geometry properties for scene re-
construction. However, this camera model does not
concisely reveal the camera sampling properties. Camera
sampling analysis can play an important role in many
applications such as splatting for image-based rendering
[1], [2], [3], [4], [5] or volume rendering [6], [7], [8], [9],
texture filtering [10], [11], level transition criterion for LOD
[12], and sampling quality evaluation for cameras with
scenes [13], [14], [15]. To the best of our knowledge, because
there is no general model to describe camera sampling,
these works are sometimes treated independently and
similar relations are derived. The purpose of this paper is
to propose a general model for camera sampling to relate
and solve many important computer graphics applications.

Chen and Williams [16] wrote a pioneering paper on

image-based rendering that used several reference images

to regenerate a novel view image. Because of the difference

in sampling between the reference and novel views, some

holes were left on the novel view images. Several studies

focused on how to apply the splatting technique to improve

the image quality and maintain a reasonable rendering

speed. To estimate the splat size on a regenerated image,

Shade et al. [1] and Chang et al. [2] used a simplified splat

size decision equation according to perspective geometry.

Similarly, Rusinkiewicz and Levoy [3] used the projected

diameter of a sphere in the bounding sphere hierarchy tree.

Pfister et al. [4] used the longest projected diagonal of
blocks in a LDC tree. Because splatting and texture filtering
are the same problem, but in opposite ways, under the
elliptical weighted average (EWA) filter framework de-
scribed by Heckbert [11], Zwicker et al. [5] recently
proposed a screen space EWA surface splatting. The EWA
filter was derived based on an R2 ! R2 perspective
mapping and the resampling theory in DSP (digital signal
processing). The EWA filter is precise, but with a high
computation cost. Zwicker et al. [9] used a similar concept
to propose an EWA volume splatting technique for
nonspherical kernels.

Another problem that accompanies image-based render-
ing is that, given a scene, how many reference images are
needed and where should these reference images be placed
such that the regenerated novel view images would possess
better quality and fewer holes. We call this problem
sampling optimization. This problem can be divided into
two subproblems: visibility analysis and sampling quality
analysis. Visibility analysis is an NP problem and was
always solved using brute-force algorithms [13], [14], [17].
We will not deal with visibility analysis in this work.
Sampling quality analysis is usually decided using some
information between the scene primitives and camera,
including the distance, projection area, viewing direction,
and so on. In this paper, we introduce some factors to
evaluate the sampling quality using the camera-sampling
field. Additionally, sampling quality analysis is useful for
applications that need to evaluate how well a camera shoots
a scene, such as the level transition criterion for LOD and
mipmap level selection [18].

In this study, the sampling density distribution of a
pinhole camera was modeled according to the property that
the pinhole camera samples on an image plane are uniform.
A vector field is then used to represent this sampling
density distribution. We proposed this idea and derivations
in [19]. In this paper, we extend this preliminary result and
draw new derivations and concepts. This novel representa-
tion can facilitate the sampling analysis for many computer
graphics applications. Many applications can potentially
benefit from camera sampling analysis, including the
splatting kernel for IBR, texture filtering, mipmap level
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selection, LOD transition criterions, LDI-construction (see
Section 4), and so on. The mathematical properties of this
vector field, such as flux, divergence, curl, gradient, level
surfaces, and the sampling pattern’s aspect ratio, can be
further used to analyze the sampling in detail. The
remainder of this paper is organized as follows: In
Section 2, a formal derivation of the 2D and 3D camera-
sampling field is given. Some essential mathematical
properties are discussed in Section 3. In Section 4, several
applications are illustrated and discussed. Our conclusion
and future works are presented in Section 5.

2 CAMERA-SAMPLING FIELD

In this section, a formal derivation of the camera-sampling
field is given. For a camera positioned in space, we say that
the camera creates a sampling field within its field of view
(FOV). This field describes the sampling density distribu-
tion of a pinhole camera. In Fig. 1, we represent both the 2D
and 3D camera sampling fields using sampling lines. Each
sampling line radiates from the center of projection (COP)
of a camera. The higher the line density in Fig. 1, the higher
the sampling density. First, we define the sampling density.

Definition 1. The sampling density at a position in a specified
direction is the number of samples per unit area (or per unit
length in the 2D case) that is centered on that position and
perpendicular to the specified direction.

For a single camera, the sampling varies smoothly and its
sampling lines never intersect one another except for the
COP. We can use a vector to represent the sampling density
by assigning the vector length as the density and the vector
direction as the specified direction. The camera-sampling
field is formally defined below.

Definition 2. A camera-sampling field is a vector field that
describes the sampling density distribution of a pinhole camera
in the direction pointing toward the COP.

In the following, an italic letter (a or A) represents a scalar, a
bold small letter (a) represents a vector, and a � aj j.

2.1 2D Camera-Sampling Field Derivation

Fig. 2 illustrates how a 2D camera-sampling field is derived.
The angle between the optical axis of the camera (y-axis in
Fig. 2) and a sampling line passing a point x; yð Þ is denoted
as � x; yð Þ and � x; yð Þ ¼ tan�1 x=yð Þ. First, cII 0; yð Þ denotes the
2D camera-sampling field at point ð0; yÞ on the optical axis.

Because of the divergence in the sampling lines, the
sampling density drops linearly as the distance from the
COP increases. Therefore, along the optical axis, the
sampling density is in inverse proportion to the distance
from the COP.

cII 0; yð Þ ¼ �CII

y
j; ð1Þ

where CII is the 2D camera-sampling constant and i and j
are unit vectors in the x and y axes, respectively.

Because the sampling density on the image plane in the
y direction is �j (one sampling per unit length), from (1), we
can evaluate CII :

cII 0; fð Þ ¼ �CII

f
j ¼ �j

) CII ¼ f ¼ res

2
cot

fov

2

� �
:

ð2Þ

In (2), f is the focal length and res is the image resolution.
By comparing the sampling density at point ð0; yÞ and ðx; yÞ,
we can obtain the strength of the camera-sampling field at
any point ðx; yÞ, as shown in (3) (for details, see the
Appendix i).

cII x; yð Þ
cII 0; yð Þ ¼ lim

dx!0

dx

dx0

) cII x; yð Þ ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
y2

:

ð3Þ

Multiplying (3) by the unit direction vector

� xiþ yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
 !

;

we have a representation of the 2D camera-sampling field as:

cII x; yð Þ ¼ �f xiþyj
y2 ; x; yð Þ within FOV

0; otherwise:

�
ð4Þ

2.2 3D Camera-Sampling Field Derivation

Considering a point P ¼ x; y; zð Þ within the FOV of a
camera, point P is associated with three planes E0, E1, and
E2 (see Fig. 3), where E0 is parallel to the image plane, E1

passes through P ’s vertical line on plane E0 and the COP,
and E2 passes through P ’s horizontal line on plane E0 and
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Fig. 1. Sampling line distribution of a camera in 2D and 3D.

Fig. 2. Derivation of 2D camera-sampling field.



the COP. To find the 3D camera-sampling field at P , the

2D camera-sampling fields on E1 and E2 are found first.

The 3D camera-sampling field is then computed according

to the included angle between E1 and E2.
In Fig. 4a, there are two planes E1 and E10 . The strength

of the 2D camera-sampling field at point O (on the optical

axis) on E10 is cII E10f g Oð Þ ¼ f 1
z . Because the strength of the

2D sampling field at point Q on E1 will be equal to that at O

on E10 , we have cII E1f g Qð Þ ¼ cII E10f g Oð Þ ¼ f 1
z . According to

(3), the strength of the 2D camera-sampling field at point P

on E1 is

cII E1f g Pð Þ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p

(see the Appendix, ii) and, similarly,

cII E2f g Pð Þ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p :

Now, let us consider a plane E3 that is perpendicular to the

sight ray, as shown in Fig. 5. Because the sampling density

at point P in the direction pointing to COP is the reciprocal

of the area per sample on this plane, we can get (for details,

see the Appendix, iii):

cIII Pð Þ ¼ 1
1

cII E1f g Pð Þ
1

cII E2f g Pð Þ
sin ffE1E2ð Þ

¼ f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
z3

:

ð5Þ

Multiplying (5) by the unit direction vector

� xiþ yjþ zkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
 !

;

we have the 3D camera-sampling field representation as:

cIII x; y; zð Þ ¼ �f2 xiþyjþzk
z3

; x; y; zð Þ within FOV
0; otherwise:

�
ð6Þ

3 PROPERTIES OF CAMERA-SAMPLING FIELD

In this section, several properties of the camera-sampling

field will be discussed. The focus is on the properties of a

3D camera-sampling field and, hence, the superscript III is

hereafter omitted in this paper. The 2D camera-sampling

field also possesses the corresponding properties in two

dimensions.
Using the coordinates settings shown in Fig. 6, we can

rewrite (6) under spherical coordinates as:

c �; �; �ð Þ ¼ � f2

�2 cos3 �u�; �; �; �ð Þ within FOV
0; otherwise:

�
ð7Þ
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Fig. 3. 3D camera sampling field derivation.

Fig. 4. (a) Plane E1 and E10 . (b) Plane E2 and E20 .

Fig. 5. Plane E1, E2, and E3. E3 is perpendicular to the sight ray (or is

perpendicular to both E1 and E2 planes).

Fig. 6. The relationship between the Cartesian and spherical

coordinates.



3.1 Camera-Sampling Flux

The flux of the camera-sampling field, camera-sampling flux,
is defined as:

�C ¼
Z
Sv

c � da; ð8Þ

where Sv stands for visible surface.
There is a distinct difference between the flux definition

of the camera-sampling field and other vector fields, like an
electric field. That is, for a given camera, the surface integral
of the camera-sampling flux is performed only on visible
surfaces (see Fig. 7). For a camera and scene surface, the
number of samples is proportional to �C .

3.2 Divergence and Curl

The divergence of a camera-sampling field is:

div c ¼ r � c ¼ �f2 @ðx=z3Þ
@x

þ @ðy=z3Þ
@y

þ @ð1=z2Þ
@z

� �
¼ 0: ð9Þ

Consider a solid angle spanned by a pyramid from a
camera’s COP (see Fig. 8). There are two curved surface
patches S1 and S2 inside the pyramid. S3, S4, S5, and S6 are
the four planes of this pyramid between S1 and S2, and
S1 � S6 define a closed bounded region V . I is the projected
area of both S1 and S2 on the image plane. According to the

Gauss’ divergence theorem [20], within the closed bounded
region V , we have:I

S1þS2þS3þS4þS5þS6f g
c � da ¼

Z
V

r � cd� ¼ 0: ð10Þ

On the planes S3, S4, S5, and S6, c � da ¼ 0 (therefore c?da),
so we have I

S1

c � daþ
I
S2

c � da ¼ 0: ð11Þ

From (11), we can conclude that under an identical solid
angle, all surface patches that can cross all of the spans in
this solid angle will have an equal camera sampling flux.
Moreover, since the camera sampling flux on the image
plane is equal to the projected area on the image plane
(because on image plane c � daj j ¼ 1), we can conclude:

Property 1. The camera sampling flux of a scene surface with
respect to a camera is equal to its projection area on the
camera’s image plane.

This property implies that, without considering occlusion,
we can evaluate a surface projection area directly on the
surface without projecting it. Therefore, it is possible to
perform sampling analysis on scene surface in detail, even
within a single triangle. In Section 4, we will use a camera-
sampling field to define the more precise factors for
evaluating how well a surface is sampled by a camera.

The curl of the camera-sampling field is:

curl c ¼ r� c ¼ �3C
y

z4
iþ 3C

x

z4
j ðCartesian coordinatesÞ

or

r� c ¼ 3C sin�

�3 cos4 �
u� ðspherical coordinatesÞ: ð12Þ

From (12), we know that the curl direction is always parallel
to u� as shown in Fig. 9a. Fig. 9b shows a profile passing
through the optical axis to illustrate the sampling line
distribution. In this figure, the curl direction at P points
inward the paper (i.e., clockwise). Consider the vicinity of
point P , the nonzero curl at P means that the sampling
density on the right side of P is denser than that on left side.
The curl value indicates the increasing sampling density
rate along �.

The curl can be used to evaluate how variant the sampling
density is around a location. The more serious the sampling
variance, thepoorer the sampling.Therefore, a curl canbeone
of the factors used to evaluate how well a surface is sampled
by a camera. Another potential use is to shear the splat kernel
on an image. After a perspective projection, the splat kernel is
no longer symmetrical on that image.

3.3 Level Surface and Gradient

The level surface of the strength function of the camera-
sampling field is:

cj j � c ¼ f2

�2 cos3 �
¼ k; ð13Þ

where k is a constant.
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Fig. 7. The camera sampling flux ðc � daÞ for the surface element A is

positive: c � da ¼ 0 (a ¼ 90�) for B; for both C and D, the camera

sampling fluxes are zero because they are not visible. (C is backface

and D is occluded.)

Fig. 8. A solid angle spanned by a pyramid from COP.



The gradient of the strength function of the camera-

sampling field is:

rc ¼ � 2C

�3 cos3 �
u� þ

3C sin�

�3 cos4 �
u�: ð14Þ

In Fig. 10, we show a level surface and gradient profile that

passes through the optical axis. On each level surface, every

point has an equal sampling density. Two objects (for

example, the object A and B in Fig. 10) at the same level

surface will have similar sampling conditions. Their projec-

tion sizeswill also be similar. Therefore, the samplingdensity

can be a level transition criterion for several applications in

computer graphics such as view-independent LOD. Note

that the gradient direction does not point toward the COP
except on the optical axis (see the arrows in Fig. 10). This
feature could be potentially helpful in sampling optimiza-
tion since the gradient is the direction in which the
sampling density increases fastest.

3.4 Aspect Ratio of Sampling Pattern

We have introduced some properties derived directly from
the camera-sampling field. Note that the camera-sampling
field is a vector field. It can characterize only the sampling
densities and sampling directions. However, there is one
more important thing for sampling: the sampling patterns.
Sampling patterns could be very complicated. For simpli-
fication and representability, we use aspect ratios to
characterize sampling patterns. Thus, the sampling patterns
can be thought of as ellipses. The minor axis ratio with the
major axis of an ellipse stands for the sampling pattern
aspect ratio.

The samples are distributed in square-grid patterns on

the image plane. In Section 2, a continuous vector field is
used to describe the camera sampling based on the
assumption that the sampling density on the image plane
is uniform. This implies that the sampling distribution on
the image plane is isotropic. Thus, the sampling pattern
aspect ratio on the image plane is always unity. In Fig. 11a,
we used two blue circles to represent two samples on the
image plane (P1 ¼ f; �; 0ð Þ and P2 ¼ �; �; �ð Þ, where f is the
focal length and � cos� ¼ f). At P1, the sampling direction
is perpendicular to the image plane. The sampling pattern
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Fig. 9. (a) The curl (r� c) of a camera-sampling field in spherical

coordinates. (b) The sampling density increases as � increases for a

fixed �.

Fig. 10. A level surface and gradient profile of the camera-sampling field.

Fig. 11. Sampling pattern illustration. f is the focal length and P1 is the

sampling on the image center.



aspect ratio in this direction (� ¼ 0) is the same as that on
the image plane. At P2, the sampling direction and the
image normal share an included angle �. Thus, the camera
field sampling pattern in this direction should be obtained
by perspectively projecting the sampling pattern onto the
image plane to a plane (the yellow quadrilateral in Fig. 11a)
perpendicular to this direction. Fig. 11b shows the front
view of this plane with the sampling pattern on it. Fig. 11c
shows a profile passing through P1, P2, and COP (a plane
with fixed �). When the sample on the image plane
approximates infinitesimal (this means the camera sam-
pling model approximates continuous), the perspective
projection approximates a parallel projection in this sam-
pling direction. This parallel projection compresses the
sampling pattern in the u� direction with a factor of cos�.
Therefore, we define the sampling pattern aspect ratio as
the length ratio of the sampling pattern in the u� and u�

direction as shown in Fig. 11b. This aspect ratio is equal to
cos�. Because the solid angle spanned by each sample on
the image plane is very small, the error produced by this
approximation is insignificant (see the splatting kernel
analysis in Section 4). When the aspect ratio is smaller than
1, the lower the aspect ratio, the less uniform the sampling.
Therefore, the sampling pattern aspect ratio can be a
criterion for judging the sampling quality. It can also be
used to analyze the shape of a splat kernel, as will be
discussed in Section 4.

3.5 Addition of Camera-Sampling Field

In force and electrical fields, the lines of force or field lines
are imaginary. They are only used to visualize the abstract
continuous field concept. The vector addition operation can
be applied perfectly to such continuous fields. However,
camera sampling is discrete. Each sampling line indeed
exists and corresponds to a pixel on the image plane. In this
paper, we apply vector addition to compose multiple fields.
Though not perfectly, it is still meaningful for some camera
sampling applications.

A compound camera-sampling field represents the
maximal compound sampling density and its direction.
This means that the compound field will produce maximal
sampling density in this direction without concern for the
scene surfaces. In the LDI-construction problem (see
Section 4), this tells us that we can use a camera that
provides the same sampling as the compound field to
sample the reference depth images and obtain an approx-
imate sampling without considering about the visibility.
Using these concepts, we can clarify the LDI-construction
problem and find the best resampling position for a LDI
(see Section 4).

4 APPLICATIONS OF CAMERA-SAMPLING FIELD

In this section, we introduce some camera-sampling field
applications. We can see that the proposed camera-
sampling field can be used successfully in many kinds of
applications in computer graphics. Note that, in Sections 2
and 3, we depicted the camera-sampling field in the
camera’s local coordinates. In the following, all vectors are
expressed in global world coordinates.

4.1 Local Sampling Analysis

4.1.1 Splatting Kernel for Image-Based Rendering

Fig. 12a shows a splatting illustration for image-based

rendering. For a given scene, the geometric surfaces are

sampled using a source camera OS . These samples are

then projected onto the image plane of the destination

camera OD. The splat size is inversely proportional to the

projection density of these samples on the destination

image. To obtain this projection density, we merely need

to compare the sampling density of the source and

destination cameras on the scene surface. Therefore, the

splat size can be calculated using (see Fig. 12b) (for

comparison with [1], please refer to [21]):

splat size pDð Þ ¼ cD�P � nP

cS�P � nP
: ð15Þ

In [4], a sample point is called a “surfel,” represented by an

oriented disk on a surface. We can calculate the splat size

using (15) by replacing cS�� � n� with the sampling density

of the sample point on the scene surface. Fig. 13a shows a

splat whose size has been determined on the image plane.

There are two factors that affect the shape of a splat kernel.

The first factor is the orientation of the surfel’s normal. A

surfel is first parallel projected onto a plane perpendicular
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Fig. 12. Sampling analysis for image-based rendering.



to a sight ray. This shape is then drawn on the image plane

according to the orientation of the projected normal as

shown in Fig. 13b (
bnuy
bnux

¼ dotðn; sight rayÞ). To maintain the

splat’s area, we need
bnuxb

n
uy

4r2 ¼ 1. The second factor is the

aspect ratio of the sampling pattern. It stretches the shape

along the radial direction from the image-center with a

factor of 1
cos� , as shown in Fig. 13c (

bsvy=b
n
vy

bsvx=b
n
vx
¼ cos� and

bsvxb
s
vy

bnvxb
n
vy
¼ 1). This approach can easily be implemented by

stretching a circular texture on the image plane.
Fig. 14 shows the splat kernels of three sample points

using two different methods. Fig. 14a is the correct
perspective surfel projection implemented using oriented
circular textured triangles in a 3D space [3]. Fig. 14b is the
proposed method that stretches a circular texture on a
2D image. Fig. 14c shows the difference between these two
approaches. We can see that, even in such an extreme case
(large projection size and off-center position), the differ-
ences are not apparent. Fig. 15a shows an original triangle
model with the sample points on the surface. Fig. 15b is
generated using the proposed splat kernel decision method.
Each kernel is implemented by stretching a circular
Gaussion texture on a 2D image plane. We adopted a
two-pass rendering pipeline that produces the depth buffer
in the first pass and culls the visible splats in the second
pass. All of the visible splat kernels were then accumulated
on the color buffer following a normalization procedure.
We can see that these two images are quite similar. More
precise splat analysis is left for the future. For example, a
truly perspective projection splat kernel is not symmetrical.

The kernel content should be sheared a little bit to mimic a

perspective projection. We think that the curl of the camera-

sampling field is the factor responsible for this affect.

4.1.2 Texture Filtering

Texture filtering is the same problem as splatting but in the

opposite way. An approach analogous to the splatting

technique described above can be applied to determine the

filter kernel and obtain the filtered color.

4.1.3 Projection Factor for a Small Surface Fragment

In [15], a projection factor for a small surface fragment (s)

was defined to obtain the probability density function for

sample point selection. This projection factor is equivalent

to the camera sampling density on a surface.

prjðsÞ ¼ c � n; ð16Þ

where n is the normal of the surface fragment s.

4.1.4 Mipmap Level Selection

For the filter dimension for perspective texture mapping,

Heckbert [22] suggested an equation that approximated the

square root of the projection area cast from a pixel onto the

surface (texture space). Williams [18] adopted this as the

filter’s diameter for each mipmap level. The mipmap level

selection is just the inverse problem to the above projection

factor evaluation problem. Therefore, we can use the square

root of the reciprocal of (16) (
ffiffiffiffiffi
1
c�n

q
) to calculate the filter

dimension to determine the mipmap level. This method is

more precise but with a higher cost.

4.1.5 Level Transition Criterion for View-Dependent LOD

The projection factor evaluated using (16) can be adopted

for level transition criterion of view dependent LOD. The

sampling pattern aspect ratio and camera-sampling field

curl can be one of the criteria. The sampling pattern aspect

ratio means the pattern regularity of this sample. The curl

describes the variation in sampling density around a

location. Moreover, the factors described in the next section

((17) and (18)) can be evaluated on a surface patch for the

same purpose with more precise analysis, but with higher

computation cost.
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Fig. 13. Shape decision of a splat kernel for uniformly sampled points.
The symbol bnux represents the bounding length in the x-axis of a
coordinate u whose y-axis is parallel to the project normal np. v is a
coordinate whose x-axis is parallel to the straight line passing through
the image-center and the projection of sample point.

Fig. 14. Splat kernel comparison. (a) Correct perspective projection.

(b) Proposed method. (c) Difference between (a) and (b). The green

areas are parts of (a), the red areas are parts of (b), and the gray areas

are the intersections between (a) and (b).

Fig. 15. Splatting using the proposed splat kernel decision method.

(a) Original triangle model with sample points (colored in blue).

(b) Splatting with the proposed splat kernel decision method.



4.2 Global Sampling Analysis

4.2.1 Sampling Optimization

A research issue in IBR is that, given a scene, how many
reference images are needed and where should these
reference images be placed such that the regenerated
images possess better quality. In this paper, we only discuss
the sampling quality issue. With the camera-sampling field,
we can define more precise factors to describe how well a
camera shoots a scene. Equations (17) and (18) are the mean
and standard deviation of the camera sampling flux
through the scene surfaces. We prefer higher mean and
lower deviation. These factors can be evaluated directly
using the numerical integral on the 3D surface patches.

�f ¼
R
Sv
c � daR

Sv
1da

¼ �C

Area Svð Þ ; ð17Þ

�f ¼
R
Sv

c � n� �f

� �2
daR

Sv
1da

 !1
2

; ð18Þ

where Sv denotes a visible surface and n is the surface
normal.

4.2.2 Level Transition Criteria for View-Independent LOD

The most intuitive LOD level transition criteria are distance,
viewing direction, and the object projection size. The
camera-sampling field can offer other factors, such as the
sampling density, the aspect ratio of the sampling patterns,
camera-sampling field curl, and the factors defined in (17)
and (18). All of these factors are meaningful, as we have
explained above.

4.2.3 LDI-Construction

An LDI is constructed by projecting several reference depth
images to a certain position (LDI’s COP). Shade et al. [1] did
not mention explicitly how they determined the LDI’s COP.
Chang et al. [2] stored an LDI for each octree cell. Popescu
et al. [23] stored an LDI for each portal in an architecture.
Each portal’s LDI is constructed by warping 2nþ 1

reference images on a semicircle in front of the portal to
the middle one. All of these works used an intuitive method
to determine the LDI’s COP. We defined the LDI-construc-
tion problem as: When reference images are available,
where should the LDI’s COP be set and what should the
LDI resolution be such that the LDI could most properly

represent all of the reference images? Here, “properly”

implies the potential to generate higher quality new views.
Let us consider the simplest case first, constructing a LDI

from one reference image, as shown in Fig. 16. We say that

the reference camera creates a camera sampling field within

its field of view. When we only consider the geometric

properties around the vicinity of a point P , the best

resampling position should be located along P ’s normal

direction. Along this direction, we can sample this area

using a lower sampling density (or lower image resolution).

However, when considering all of the scenes, the best

resampling position should be the same as the reference

camera. This is because, only at this position can a camera

be used to sample the scene with the same sampling density

everywhere on the scene surfaces (or create the same

camera sampling field as the reference camera).
Consider two cameras in a scene (Fig. 17a). At a

position P , the compound field is c Pð Þ ¼ cA Pð Þ þ cB Pð Þ.
A line passing P and parallel to c Pð Þ can be written as:

pþ sc Pð Þ

¼ p� s f2A
p� oA

RAk � p� oAð Þð Þ3
þ f2

B

p� oB

RBk � p� oBð Þð Þ3

 !
;

ð19Þ
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Fig. 16. LDI-construction from one reference image.

Fig. 17. LDI-construction illustration. These illustrations are pictured in

2D while our equations are in 3D. (a) Two arbitrary cameras and their

composed field at P . (b) The sampling condition of two parallel cameras.



where s is a scale value. fA and fB are the focal lengths of

cameras A and B. RA and RB are the rotation matrices that

define the local coordinates for cameras A and B.RAk � kA

is the unit optical axis vector of camera A.

Assume that these two cameras are parallel. In this case,

the denominators in (19) are fixed while P is located on a

certain plane (says D1 plane in Fig. 17b) that is perpendi-

cular to the cameras’ optical axes. Let RAk � p� oAð Þ ¼ DA

and RBk � p� oBð Þ ¼ DB, (19) can be rewritten as:

1� s
D3

Bf
2
A þD3

Af
2
B

D3
AD

3
B

� �
pþ s

D3
Bf

2
AoA þD3

Af
2
BoB

D3
AD

3
B

: ð20Þ

Choose s to eliminate p in (20). Equation (20) becomes:

D3
Bf

2
AoA þD3

Af
2
BoB

D3
Bf

2
A þD3

Af
2
B

: ð21Þ

This means that the compound fields at all positions on the

D1 plane would point to an identical point Q1 located at

D3
Bf

2
AoA þD3

Af
2
BoB

D3
Bf

2
A þD3

Af
2
B

(a point on OAOB). We call this point the convergent point

of the D1 plane. Additionally, the sampling density at this

plane in the plane’s normal (or kA) direction is fixed and

equal to

D2
Bf

2
A þD2

Af
2
B

D2
AD

2
B

(see the Appendix, iv).This means that, regardless of

visibility, the reference cameras A and B form a camera-

sampling-like field at the D1 plane or we can say the

sampling of cameras A and B on the D1 plane is

approximate to a specific camera. This camera’s COP is

located at the convergent point Q1 and its camera-sampling

constant is

D2
Bf

2
A þD2

Af
2
B

� �3
D3

Bf
2
A þD3

Af
2
B

� �2
(see the Appendix, v). Using this camera to resample the

reference images, we can potentially create the high quality

LDI representation.
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Fig. 18. Two comparisons of the LDI-construction from the convergent point and the average position. In each example, the first row image shows

the top view of the scenes and 10 sets of camera configurations (each configuration has two reference cameras and one camera at a convergent

point). the view frustums of the first set of cameras are also shown in the top view. The second row images show the first set of reference images.

The number of total samples is counted by the samples inside the intersection of two reference view-frustums.



Fig. 18 shows two examples of the comparison of the

LDI-construction from the convergent point and the

average position of the reference cameras. In each example,

we randomly pick 10 sets of two parallel reference cameras.

In example I, the viewing directions of all 10 sets of cameras

point upward, whereas, in example II, some are not. The

scenes are first sampled by the two reference cameras.

Then, all the sampled points are reprojected to the

convergent point or the average position of reference

cameras to construct an LDI. Our analysis above is valid

at the region that both reference cameras can see. Thus, in

these two examples, we only focus on the region inside the

intersection of two reference view-frustums. In the LDI-

construction, improper resampling would cause many

nearby samples to projecte to the same LDI pixel. In this

case, the LDI [1] approach blends these samples together.

This will cause a blur effect in LDI representation and the

regenerated novel views. In these two examples of Fig. 18,

the convergent point corresponds to a plane with the depth

computed by averaging the depths of all of the samples. We

can see that the resampling at the convergent point causes

fewer samples to be merged into an LDI and, thus, we can

keep more samples in the LDI representation than at the

average position. Therefore, the convergent point is a better

resampling position than the average position, as we expect.

5 CONCLUSION AND FUTURE WORKS

We presented a novel representation for modeling the

sampling density distribution of a pinhole camera. This

mathematical model facilitates the sampling analysis and

clarifies the physical meaning of camera sampling. As

illustrated and discussed in Section 4, this approach can be

widely applied to many domains involving camera sam-

pling. In this paper, we demonstrated some usages for this

novel representation. Other mathematical properties of this

model may be helpful for advanced analysis. For example,

in general, the splat kernel should not be symmetrical. That

is, the projection of a sample is not located at the center of

the splat. We think that the curl can offer quantitative

information about this problem. This analysis may not be

feasible when considering rendering speed, but it can

produce more precise output images. The LOD camera-

sampling field applications were explained briefly and not

illustrated by examples in this paper. We plan to apply the

several criteria mentioned above to LOD techniques and

quantify the results. Additionally, we discussed only the

camera arrangement with the parallel view direction for

LDI-construction problem. We will discuss more compli-

cated and general reference camera arrangements in the

near future. We are still investigating other new features

and novel camera-sampling field applications.

APPENDIX

ðiÞ cIIðx; yÞ ¼ lim
dx!0

dx

dx0 c
IIð0; yÞ

� �

¼ lim
dx!0

sin½�=2� �ðx; yÞ þ �ðxþ dx; yÞ	
sin½�=2� �ðxþ dx; yÞ	

CII

y

� �

¼ lim
dx!0

cos½�ðx; yÞ � �ðxþ dx; yÞ	
cos½�ðxþ dx; yÞ	

CII

y

� �

¼ lim
dx!0

cos½�ðx;yÞ	 cos½�ðxþdx;yÞ	þsin½�ðx;yÞ	 sin½�ðxþdx;yÞ	
cos½�ðxþdx;yÞ	

CII

y

h i

¼ lim
dx!0

CII ½y2 þ xðxþ dxÞ	
y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
" #

¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
y2

ðiiÞ cIIfE1gðP Þ ¼ f 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
x2 þ z2

¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
x2 þ z2

¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p ;

where f 0 can be thought of as the focal length of the

2D camera on E1 (Fig. 4a).

(iii) The normal of the planes E1 and E2 are z; 0; xð Þ and
0; z; yð Þ, respectively. Thus,

sinðffE1; E2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2ðffE1E2Þ

p
¼ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

ðx2 þ z2Þðy2 þ z2Þ

s

ðivÞ � cðP Þ � kA ¼ �cAðP Þ � kA � cBðP Þ � kB

¼ f2
A

D2
A

þ f2B
D2

B

¼ D2
Bf

2
A þD2

Af
2
B

D2
AD

2
B

:

(v) The depth (distance) from the D1 plane to its

convergent point is

D3
Bf

2
ADA þD3

Af
2
BDB

D3
Bf

2
A þD3

Af
2
B

:

Additionally, we know the sampling density at theD1 plane

in its normal direction. Therefore, we have:

CAþB

D3
B
f2
A
DAþD3

A
f2
B
DB

D3
B
f2
A
þD3

A
f2
B

	 
2 ¼ D2
Bf

2
A þD2

Af
2
B

D2
AD

2
B

) CAþB � f2
AþB ¼

D2
Bf

2
A þD2

Af
2
B

� �3
D3

Bf
2
A þD3

Af
2
B

� �2
) fAþB ¼

D2
Bf

2
A þD2

Af
2
B

� �3
2

D3
Bf

2
A þD3

Af
2
B

;

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004



where CAþB and fAþB are the camera-sampling constant
and focal length of the new camera, respectively.
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