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Morphology-Based Three-Dimensional Interpolation
Tong-Yee Lee* and Wen-Hsiu Wang

Abstract—In many medical applications, the number of
available two-dimensional (2-D) images is always insufficient.
Therefore, the three-dimensional (3-D) reconstruction must
be accomplished by appropriate interpolation methods to fill
gaps between available image slices. In this paper, we propose
a morphology-based algorithm to interpolate the missing data.
The proposed algorithm consists of several steps. First, the object
or hole contours are extracted using conventional image-pro-
cessing techniques. Second, the object or hole matching issue is
evaluated. Prior to interpolation, the centroids of the objects are
aligned. Next, we employ a dilation operator to transform digital
images into distance maps and we correct the distance maps if
required. Finally, we utilize an erosion operator to accomplish
the interpolation. Furthermore, if multiple objects or holes are
interpolated, we blend them together to complete the algorithm.
We experimentally evaluate the proposed method against various
synthesized cases reported in the literature. Experimental results
show that the proposed method is able to handle general object
interpolation effectively.

Index Terms—Blending, dilation and erosion, distance-maps, in-
terpolation, morphology, object centralization.

I. INTRODUCTION

T ODAY, clinicians exploit computer graphics tools to
enable them to visualize, manipulate, and quantitate the

three-dimensional internal structures of patients. Major sources
of data in these medical applications are gathered from two-di-
mensional (2-D) medical-imaging devices such as CT, MRI
and PET. A three-dimensional image, formed by stacking a
contiguous series of 2-D images, can be used to visualize com-
plex structures in three-dimensional (3-D). However, generally,
the number of image slices generated from these instruments
are not adequate enough to produce high-quality 3-D images.
Therefore, in such situations, interpolation is always required to
estimate the missing slices before the subsequent visualization.

In this paper, we utilize dilation and erosion operators in mor-
phology to perform interpolation. In the past, a variety of ap-
proaches have been proposed to reconstruct 3-D objects. Here,
we only review the most related prior work. Among this work,
the simplest method is to linearly interpolate the gray values in
the slices to fill in the gray values in the missing slices [1]–[6].
With this scheme, an artifact always arises when the location
of a boundary between two uniform regions shifts considerably
between two adjacent slices. Keyset al.[7] attempted to exploit
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higher order functions to reduce artifacts. To handle branching
situations, a dynamically elastic surface interpolation scheme
was proposed in [8]. The key concept is to identify a force acting
on one contour and try to distort it to be like the other contour.
However, the resulting surface may be coarse if there is high dis-
similarity among these contours [9]. To alleviate this problem, a
hybrid approach combining elastic interpolation, spline theory
and a surface consistency theorem was proposed in [9] for con-
structing a smooth 3-D object. The above two methods [8], [9]
have very high computational complexity.

Rayaet al. [10] and Hermanet al. [11] exploited the concept
of a distance transform to interpolate binary-valued 3-D images.
This widely used method is termed shape-based interpolation.
Compared to [8], [9], this type of algorithm is considerably sim-
pler in practical implementation and is very inexpensive in com-
putational complexity. However, this method fails to interpolate
the slices when there is no overlapping area between the two
objects. To overcome this drawback, Guoet al. [12] developed
a morphology-based interpolation method. In this method, only
the nonoverlapping regions are interpolated using a sequence of
dilation and erosion operations. Our proposed scheme is sim-
ilar to this approach. However, their approach computed normal
vectors to control disk-like morphology operators. In contrast,
our proposed scheme is simpler in computational complexity,
but performs as well as [12]. In some cases, such as invagina-
tion and branching, the proposed method performs better than
[12].

The remainder of this paper is organized as follows. We
present the proposed methodology in Section II. The algorithms
and implementation details are described in Section III. In
Section IV, experimental results and discussion are given.
Finally, the conclusion and future work is stated in Section V.

II. M ORPHOLOGY-BASED INTERPOLATION

In this section, we will present the idea of the proposed inter-
polation scheme. First, we will consider one-to-one object inter-
polation and we extend this one-to-one example to handle more
complicated cases. The more algorithmic details will be given
in Section II-A.

A. One-to-One Object Interpolation

Shape-based interpolation converts binary images into
distance maps by distance transformation functions such as
chamfer or city-block distance template [8], [10], [11]. These
templates are used to efficiently approximate theEuclidean
shortest distancebetween the pixel and the contour of the
object. Unfortunately, if there is noprior alignment between
two input images, shape-based interpolation cannot perform
well. For example, in Fig. 1(a) and (b), there are two contours
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Fig. 1. Shape-based interpolation and object centralization.

denoted as and on two binary images. Without an
appropriate alignment, the shape-based scheme creates a bad
interpolation as illustrated in Fig. 1(c), where there is no
contour in this interpolated image. In shape-based scheme, the
distance stored on a pixel, say, is defined by

dist code
/* pixel on contour
/* pixel in object
/* pixel outside object

(1)

where
represents the object;
represents the contour of the object;

dis code shortest distance from to .
Observing Fig. 1(a) and (b), we know the interpolated distance
codes all will be negative on the interpolated image in Fig. 1(c).
Therefore, there is no object on it according to (1). On the other
hand, if we perform an appropriate alignment so as to match
the centroids of two objectsprior to distance transformation
[as shown in Fig. 1(d)], we can obtain a better interpolation as
shown in Fig. 1(e). Therefore, we will perform this kind of align-
ment which is termedobject centralizationin this paper.

Morphology-based interpolation can be schematized as
shown in Fig. 2. First, we align two corresponding objects
and using object centralization. After this alignment,
there are three kinds of possible portions: region I, II, and
III, respectively. Regions I and II represent the morphological
difference between the two objects and . Then, we
apply adilation operator to both regions I and II, respectively.
The purpose of this step is to obtain the dilation-based distance
from the pixel (i.e., on region I or II) to the boundary of
region III. After this, we can apply anerosion operator to
interpolate the results. More details about these two operators
are provided in Section III.

During interpolation, each pixel in both regions I and II will
gradually move toward region III. The number of erosions is
determined by anerosion factor, denoted as . Assume we want
to interpolate slices between two objects, then theerosion
factor for the th slice is determined by

(2)

where is anerosion factorfor region I and is the factor
for region II. The interpolated object for the th slice is
defined by

Erosion Erosion

Erosion Erosion (3)

Fig. 2. Morphology difference betweenX and X after object
centralization.

The Erosion performs exact interpolation and it is accom-
plished by an erosion operator. For the, we apply Erosion
to both regions I and II with erosion factors and , re-
spectively, and then we combine them with region III to obtain
the object .

Prior to employing our proposed interpolation scheme, sev-
eral preprocessing steps must be performed such as contour ex-
traction and hole identification. These topics are well researched
and are beyond the scope of this paper. In the following dis-
cussion, we assume that the above preprocessing steps are fin-
ished and provide each corresponding object pair such as
and .

B. Pseudoobject Generation

Hollows or holes may occur in the image slices. We treat
holes and objects separately. In other words, we will perform
hole-to-hole interpolation the same way described in Sec-
tion II-A for object-to-object interpolation, but in a separate
step. We will treat holes as negative objects and nonhole objects
as positive objects. For any hollow pair, there must exist a
corresponding positive object pair. Sometimes we will have one
hollow inside one object, but there is no corresponding hollow
inside the other object. In such a situation, we need to produce a
pseudohole; in order to create a hole pair. Similarly, if we have a
positive object on a slice and there is no corresponding positive
object on the other slice, we will create a pseudopositive object.

To generate a pseudopositive object is very straightfor-
ward. Assume we have a positive object and its center is at

. Then, on the other slice, we create a corresponding
pseudopositive object at with a size of one pixel. For
a pseudonegative object, there is some extra work described
as follows. In Fig. 3, there are two corresponding objects and
their centroids are Oand O . The two objects are bounded by
boxes A B C D and A B C D . Each box is further divided
into four subregionsA O B O C O D O based on O.
Assume on the first object, we have a hole and its centroid
is . In Fig. 3(a), we suppose is located in
D O (denoted as region). Then, we will create a pseudohole
at D O (denoted as region) in Fig. 3(b), too. The size of
this pseudohole is one pixel and its centroid, can be
computed in

length of region
length of region
length of region
length of region

(4)

O (5)
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Fig. 3. Pseudohole generation.

Fig. 4. Example of incorrect pseudohole generation.

In (4) and (5), is a vector from O to . If, instead,
we tried to compute directly by O , it could
incorrectly create a pseudohole outside the object (as shown in
Fig. 4).

Finally, we should mention that in the pseudoobject genera-
tion, there would be problems if the holes or objects in a slice
pair do not match. There could be a case where each slice has
one hole. The proposed algorithm would join them, but these
two holes could really be just axial concavities, one ending at
slice 0 and one starting at slice . However, for such special
cases, there is nothing one can do about this aliasing problem.
For these cases, the proposed matching algorithm could fail here
to detect the mismatch.

C. Multiple Object Matching

Multiple objects may exist on two input slices. In this situ-
ation, we need to solve matching problem. In this paper, we
do not concentrate on this issue, but we provide a simple rule
for it described as follows. First, for each potential object pair

, we will evaluate a score of matching given by (6). Then,
if this score is higher than a threshold, we say this object pair is
matched.

score overlap dist dist

(6)

Fig. 5. Object matching.

TABLE I
THE MATCHING SCORE FOREACH OBJECTPAIR IS SHOWN. THE POSITIVE AND

NEGATIVE OBJECTSCANNOT BE MATCHED, SOWE SHOW “*” IN THIS TABLE

Fig. 6. An example of interpolation using our matching policy.

Fig. 7. (a) Bad interpolated results without following (8). (b) Better
interpolation results, if we follow theblending orderin (8).

In (6), we take two factors into account: 1) object pair
is overlapped or not (i.e., returns 1 or 0), and 2) the distance
between two object centers is within a range or not. Both
and are user-specified weights to compute (6). For a given
object pair, we select the larger one and find thewidthandlength
of its bounding box. Then, we let dist be the sum of
width and length. In Fig. 5, we show two slices (a) and (b).
Using this simple rule, we obtain the following matched object
pairs. For clear illustration, we assign a positive identifier to a
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Fig. 8. The flowchart of the proposed scheme.

positive object and a negative one to a hole. In this experiment,
, and the score threshold is 0. Table I shows

detailed matching scores under this configuration.
From Table I, the contour (105) in (a) forms corresponding

contour pairs with both (102) and ( 103) in (b). Therefore, the
list in Fig. 5(a) has ( 105) twice. Negative scores such as pairs
in ( 102, 102), ( 106, 102) and ( 106, 103) mean these
pairs can not be matched using (6). In Fig. 5(b), a pseudohole
is marked by “ .” Since in (a) there is no matching for the hole
( 106), we must create a pseudohole termed (104) in (b).

Next, in Fig. 6, we show interpolated results for the above ex-
ample using our simple policy. We see three holes (vertically)
gradually become two holes (horizontally). For more informa-
tion about interpolation, see Section II-D.

D. Object Blending

In Section II-A, we propose to interpolate objects after object
centralization. Assume that we have two objectsand
and their centroids are Oand O , respectively. After inter-
polation, we compensate for the effects of object centralization
by translating the interpolated object back to the correct po-
sition, computing the new centroid of , O , according to

O O O (7)

As mentioned earlier, we separately interpolate positive object
pairs and negative object pairs. Afterwards, we combine them
using

if positive object

if negative object (8)

In (8), objects and are blended results for the posi-
tive and negative objects, respectively. This equation defines the
blending order: we blend all positive and negative objects sep-
arately and then subtract from . Fig. 7(a) and (b) show
results without and with being guided by (8).

III. A LGORITHM DETAILS

Fig. 8 shows the flowchart of the proposed method, and in this
section, we will provide more algorithmic details about dilation,
erosion, and distance code correction. In this figure, there is a
dotted line connecting the “end” with the beginning. It means
that each object pair will iterate the same tasks.

Fig. 9. Dilation Based Distance versus Euclidean Distance.

Fig. 10. Dilation cross-structure element.

A. Distance-Based Distance Transformation

In [13], [14], a variety of distance transformations for dig-
ital images are discussed. In general, most approaches concen-
trate on using different convolution masks such as city block or
chamfer template to approximateEuclidean shortest distance
efficiently. Considering an example in Fig. 9 based on Fig. 2,
assume there are two objects and , and is fully
enclosed by . In this case, a pixel belonging to
will correspond to on usingEuclidean shortest distance
transformation. This result seems awkward, since a better result
would have the intermediate pixel moving fromto . To
achieve this, we propose to use a dilation-based distance instead
of aEuclidean shortest distance. For this example, we first will
employ a dilation operator to calculate the morphology differ-
ence area, and then apply an erosion operator to this region. We
attempt to ensure that eachis contracting gradually toward
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Fig. 11. Dilation-based transformation algorithm.

and its intermediate results are all within the morphology-differ-
ence area.

Our dilation operator is a 3 3 cross-structure element as
shown in Fig. 10. Assume this structure element is working on
a pixel and its distance code is. After dilation, the distance
of each neighboring pixel will be updated by if the dis-
tance code stored on the neighboring pixel is more than .
Otherwise, there is no update. The latter case implies there is
a shorter path from another point to this neighboring pixel. In
Fig. 11, we show the algorithm to perform distance transforma-
tion for two digital image slices. In this algorithm, we require
a first-in–first-out queue (FIFO) linked list and on this list each
node is a structure including five fields, namely,

1) : pixel’s coordinate;
2) : pixel’s coordinate;

3) distance map identifier;
4) distance map identifier;
5) distance code stored at pixel ( ).

In the above algorithm, we use two arrays and to
store distance codes for region II (i.e., )
and region I (i.e., ), respectively. Initially [part
(a) in algorithm], each pixel of the distance maps (or )
is set to be 1 (i.e., outside or ) or 0 (i.e., inside
or ). Then, we insert all pixels of both and
into a list called the active dilation list . The distance code
of these contour pixels is all zero. Fig. 12 shows an example
for this initialization. In this example, we assume a smaller ob-
ject is fully enclosed by a larger object . We start from
each node at active linked list to perform the dilation [part
(b)]. In other words, we start the dilation from layer zero, since
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the distance code of all nodes at is zero (i.e., contour pixels
at both and ). In the course of dilation, there will
be many dilation layers created in a monotonically increasing
order (distance code value) and each layer has an equal distance
code [part (c)]. Furthermore, once a layer is totally completed,
then we start another layer [part (f)]. While performing dilation,
a node will insert a new node belonging to the next layer into the
tail of . Therefore, this newly added node will not start dila-
tion until those nodes (with smaller distance codes) in front of it
finish dilation. The whole dilation will be repeated until there is
no pixel with 1 within the morphology difference region [part
(e)]. Fig. 13 shows dilation results for Fig. 12. In Fig. 13(b), be-
cause the morphology difference ( ) is a null
set, there is no change on after completing dilation. To the
contrary, on distance map , all pixels have positive distance
code within area

B. Distance Code Correction

After dilation, we obtain many contour-like layers with posi-
tive codes for the morphology-difference area. Furthermore, we
will classify those pixels located on the outermost layer into
two categories: namely,terminalandtransientpixels. The dis-
tance code of eachtransientpixel will be corrected in the pro-
posed scheme. We illustrate the idea of this correction by using
Fig. 14. Assume we have two rectangular objects: the larger one
is called and the smaller one is called . In this figure,
the morphology-difference is the nonshaded region. After ac-
complishing dilation, the distance codes for this nonshaded area
are all positive. In Fig. 14(a), we only show the distance codes
for those pixels located on the outermost layer. In this example,
let us consider three pixels on the outermost layer, labeled, ,
and . Their distance codes are 0, 3, and 6, respectively. From

to , we have distance codes 0, 1, 2, 3, 4, 5, and 6. Suppose,
we directly interpolate an intermediate object at .

Each outermost pixel will erode steps toward the
shaded region where is the distance code stored at each
outermost pixel. In this manner, for those pixels fromto ,
they will erode 0, 1, 1, 2, 2, 3, and 3 steps in a linear manner.
These erosions lead to an awkward result as shown in Fig. 14(b).
A better interpolation would generate a rectangular object. To
achieve this goal, we propose to modify these distance codes as
shown in Fig. 14(c)prior to erosions. In this paper, those pixels
that are not to be corrected are calledterminalpixels. Otherwise,
they are calledtransientpixels. From our point of view, these
transientpixels are in the course of interpolation (erosion path)
of theterminalpixels. Therefore, we cannot erode starting from
them.

The algorithm of distance-code correction is illustrated in
Fig. 15. For a pixel on the outermost layer, we will search for
a special pattern in its eight neighboring pixels (left and right,
bottom and top, and two diagonals) to correct its code as shown
in Fig. 16. Note that for the diagonal cases, the special pattern
consists of three consecutive codes in ascending order (such as
2, 4, and 6).

In the above algorithm, we use an extra 2-D arrayto store
distance codes. Recall that and store distance codes
for the morphology difference area. This extraarray is used to
store the number of erosions for the contour of the morphology

Fig. 12. Initialization for two distance maps:A andA .

(a) (b)

Fig. 13. (a) and (b) are dilation results on distance mapsA andA .

Fig. 14. Distance-code correction.

difference area. In Section III-C, we will show how to use array
to interpolate objects with the guidance of and .

Similarly, we also use an FIFO-linked list structure called
in this algorithm. This structure is exactly the same asused
in the previous section. First, the initialization consists of three
consecutive steps:

1) initialize 2-D array with ” ” (i.e., means a very large
number);
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Fig. 15. Algorithm distance-code correction of distance mapsA andA generated by algorithm in Fig. 11.

2) store 1 on each pixel of for the morphology-differ-
ence area defined by and

;

3) store the distance code of a pixel ( ) that belongs to
both and on and in

.
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Fig. 16. When three successive distance codes increase monotonically, the
distance code of the middle pixel is assigned the lower of the two adjacent
distance codes.

Before performing distance code correction, we have finished
dilation-based distance transformation. All pixels belonging to

and are with nonzero distance codes. Then, we in-
sert all pixels belonging to and into and we sort
nodes in an ascending order on based on distance code[al-
gorithm part (a)–(c)]. The purpose of this sorting is to facilitate
the distance-code correction. To findtransientpixels, we search
corrected patterns starting from node with the smalleston

. For each checked node, we will check its eight-neighboring
pixels in two phases: the first phase is to check four-neighboring
nodes on left and right, and bottom and top, and the second
phase is to check neighbors on two diagonals. We use two flags,
flag_up and flag_down to indicate if we find a corrected pat-
tern in the first and the second phases. For a node , if its
bothflag_upandflag_downare true, we conclude this node is a
transientpixel. Then, we will correct its distance code on array

. Therefore, in Fig. 14(c), except pixels and , the
other pixels aretransientpixels from to . We correct these
transientpixels with the distance code of the pixel. Fig. 17
shows the result for Fig. 13 after this correction. In this figure,
the corrected pixel is marked using abold square.

C. Erosion-Based Interpolation

In [12], Guoet al.used a circular disk-like structure element
to perform erosion. This approach requires complicated com-
putation to find the normal vector of boundary pixels indicating
erosion direction. To apply this approach to Fig. 14, they will
potentially create bad results like Fig. 14(b). In contrast, we use
a simple cross-structure element instead to perform erosion. It is
very simple in computational complexity and easy in practical
implementation. In our implementation, there are three 2-D ar-
rays: , , and to assist in accomplishing interpolation.
From our point of view, the first two arrays serve as guiding
maps that show how to erode (contract) in the course of inter-
polation. The latter array stores the number of erosion steps
for each contour pixel of the morphology-difference area. In
our implementation, array is not a floating point array but
it is rounded integer array. Fig. 18 shows the algorithm for ero-
sion-based interpolation.

In the above algorithm, the part (a) will initialize an active
erosion list . The data structure of is exactly the same
as and . Then, in part (b), we calculate exact number of
erosion steps using (9) for each node in
and update 2-D array by

if

if
(9)

In the above equation, is anerosion factorfor the region
and is used for the region

. In part (c), assume that we are now working at
pixel , and indicates how many
steps are still left to erode (contract). The pixel

Fig. 17. Corrected distance map. Note that “*” means1.

will potentially contract toward each four-neighboring pixel, say
. Similar to dilation, there are two rules to guarantee

correct erosion described as follows.

1) Normal case: if is equal to , and
is greater than , then there is a dilated path

from to generated in Section III-A.
Therefore, is allowed to contract toward

during erosion. Additionally, to finish erosion, still
needs to erode steps.

2) Special case: if is equal to , we
need to further check if all four-neighboring pixels, say

, are all satisfied or
not. If yes, we say can shrink to . However,
to finish erosion, still requires steps instead of

.
If the above two conditions are satisfied, the pixel
is allowed to shrink to . Then, we need to determine if we

will insert in described as follows. If
, we will insert it in and also update by
. Otherwise, we do not need to insertin , since the

consecutive erosions from are totally included in the other
longer and consecutive erosions. Therefore, we do not need to
insert in , since we do not need to repeat erosions that
will be included by the other node. Fig. 19(a) and (b) shows
interpolated results with and without correcting code. Note that
in both figures, the contour of interpolated object is composed
of zero code pixels. Fig. 19(c) and (d) shows 3-D reconstructed
results if we interpolate 100 slices between two input slices.

The experimental results show we can get better interpolation
after distance code correction. In Fig. 19(c) and (d), we circle
two places to remark their difference in interpolation. In this
example, these should be linear edges in these places, but in
Fig. 19(c) these edges appear as nonlinear edges.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed scheme, we used
many synthesized images that were used or similar to those
used in previous studies. Both Figs. 20 and 21 were also tested
in [8]. This approach [8] employed a very computationally in-
tensive method to distort one contour to be like another one.
Using the simpler proposed scheme, we see the shapes of inter-
mediate contour change smoothly between two different shape
contours. The next two examples were tested in [12]. Fig. 22
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Fig. 18. Erosion-based interpolation algorithm.

is a set of ring-like objects with no overlapping area. Guoet
al. [12] reported that this tested data cannot be handled well
by the shape-based scheme. However, our results show the pro-
posed scheme yields very satisfactory results. The left side of
Fig. 23 demonstrates the interpolation between a hollow ob-
ject and a solid object. In [12], Guoet al.showed that unlike
our method, shape-based [11] and dynamic elastic methods both
fail to deal with this kind of deformation. Shape-based method
simply interpolates distance code for the whole image. The right

side of Fig. 23 shows 3-D rendered results as we interpolate
100 slices between the two input slices. In this case, we created
a pseudonegative hole, and we separately interpolated positive
and negative object pairs and then blended them.

The next example is shown in Fig. 24. In this figure, the source
object contains more connected regions than the target object
(i.e., branching case). Similar examples have been widely tested
[8], [9], [12], [15]. The proposed scheme yields very satisfactory
results. Furthermore, our results seem better than those of most
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(a) (b)

(c) (d)

Fig. 19. Interpolated result with and without correcting distance code. (a)
ArrayB without distance correction. (b) ArrayB with distance correction. (c)
Without correction. (d) With correction.

Fig. 20. Interpolation between two synthetic contours that was tested in [8].

Fig. 21. Interpolation for concave case [8].

Fig. 22. Interpolation for a set of ring-like objects [12].

approaches. In this case, the proposed algorithm will first inde-
pendently interpolate three positive object pairs. Then, we unite
these three interpolated results together. The final two examples

Fig. 23. Interpolation between a hollow object and a solid object [12].

Fig. 24. Branching case [8], [9], [12], [15].

Fig. 25. The ring case [15].

Fig. 26. The invagination case (abrupt change in shape) [15].

areshown inFigs.25and26. InFig.25, thesource imagecontains
a small ring, while the target image contains a large one with
large offset. Fig. 26 is called heavy invagination case (i.e., abrupt
change in shape) in [15]. In [15], both cases were not handled
well by another morphology-based scheme [12]. However, from
the experimental results, it is clear that the proposed scheme can
handlebothcaseswell.Additionally, [12]exploitedthebeginning
and ending points of morphology-difference vectors as cue to
interpolate object. This approach seems to be more complex than
the proposed scheme. Therefore, the proposed dilation and ero-
sion can obtain better efficiency in computation. In summary, we
have evaluated the proposed scheme using a variety of examples
that were used in the previous work. From the above examples
with synthesized objects, the proposed method handles different
situationseffectively.

With respect to computational complexity, the proposed algo-
rithmisinproportiontothenumberofobjectpairs.Foreachobject
pair,weonlyneedtointerpolatetheirmorphology-differencearea
rather than the whole image. In final, we blend all interpolated
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TABLE II
WE SHOW THE EXECUTION TIMING FOR EACH EXPERIMENT AND WE

INTERPOLATE100 SLICES BETWEENTWO INPUT SLICES IN EACH EXPERIMENT

Fig. 27. An example cannot be handled well by the proposed method.

objects. On the other hand, the shape-based method interpolates
distanceonwhole images. In this respect, if there are fewer object
pairs or large overlapping regions, the proposed scheme’s com-
putational complexity is lower thanshape-basedmethods.But, in
the reverse case, the shape-based method seems faster, but it has
many drawbacks as pointed out in previous work. Similarly, the
complexity of [12] is also linear in regard to the number of object
pairs. This approach requires expensive cost in determining the
correcterosionvector. In thisrespect,ourproposedschemeseems
morepractical than thisapproach.Furthermore, theexperimental
results show the proposed scheme can handle more general cases
than [12]. As for the other higher complexity algorithms such
as [8], [9], they are specialized for branching or shape with dis-
similarity case. The proposed scheme also can handle well their
examplesbutat much lowercomputational cost.We conclude the
proposedschemeisverysimpleatbothcomputationalcomplexity
and practical implementation, but very effective at handling
different cases. Finally, Table II shows execution timing for each
experiment. Our experiments were performed on the Intel Pen-
tiumII,233MHzpersonalcomputerwith256MBmainmemory.

Although the proposed method can solve many drawbacks re-
ported in previous studies, in some situation our method cannot
handle it well. In Fig. 27, the region III ( ) is equal to

. There is a very narrow concavity (i.e., marked by) in the
object . In the course of dilation, the region near towill be
filled up earlier than the region near to. The distance codes of
the region near to will be larger than those of the region near
to . In this situation, unfortunately, the erosion cannot contract
into the region near to . Therefore, we cannot obtain an appro-
priate interpolation.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a morphology-based interpolation
scheme. The proposed scheme has been experimentally shown
to successfully resolve complex interpolation problems that
cannot be well handled by previous approaches. Without
complicated computation such as elastic force, the proposed
scheme can handle branching problems. By combining object
centralization and pseudoobject generation, the proposed
scheme can handle interpolating objects with large offsets and

objects with holes. Additionally, to create smooth results, the
proposed scheme corrects distance codeprior to interpolation.
In implementation, we use three 2-D arrays to store distance
maps ( and ) and the erosion map (). The former two
arrays serve as interpolating maps to guide how to interpolate
objects. These two maps are unchanged for a given object
pair. The array is a temporary array to indicate how many
steps are left to interpolate. Compared to other schemes, the
proposed scheme is simpler in computational complexity, but
from the experimental results of test examples, our method
is proven to handle general object interpolation, including
branching, hollow case, and invagination. All these examples
can be automatically interpolated and properly handled in
our scheme. In near future, we plan to apply the proposed
scheme to handle multidimensional objects. In particular, we
are interested in exploiting this scheme to visualize dynamic
movement of organs in four dimensions. Additionally, we will
study how to solve the problem as shown in Fig. 27.
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