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1 Training details of the autoencoder network for comparison10

In our network architecture, we use both general convolutional layers and the11

concept of residual blocks [1]. A residual block is a block of layers where the12

input to the block is added element-wise to the output of the block. This13

technique helps prevent vanishing gradients which is a common problem in14

training deep neural networks. We use scaled exponential linear units (SELUs)15

[4] as our activation functions except in the last layer where we apply a sigmoid16

function to guarantee that the output image pixel values are between zero and17

one. We also use batch normalization layers [2] in our model to keep the values18

of tensors propagating in the network to have zero mean and unit variance.19

The benefits of the SELU activation functions and batch normalization layers20

are to train a deeper network and make training converge faster. Figure 1 gives21

additional details about the network architecture.22

For training, we collect 20 Japanese cartoon animations, where each video23

is about 25 minutes long, and linearly scaled each frame to w = 320 pixels and24

a height h = 180 pixels to reduce training time. To avoid images which are25

nearly identical, we obtained the training images by uniformly sampling one26

out of every ten frames. In total, our training set and validation set consists27

of 60000 and 10000 images, respectively. We use L2 distance to measures the28
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error between the original images X and the reconstructed image φ(X):29

L(X,φ(X)) =

h∑
i=1

w∑
j=1

‖ Xi,j − φ(X)i,j ‖2, (1)

where Xi,j and φ(X)i,j ∈ [0, 1]3 are the red, green, and blue components of the30

pixel(i, j) in the original image and the reconstructed image, respectively. Then31

the optimal parameters of the encoder and decoder, are those which minimize32

a mean-square error loss across all iterations of the training process, where the33

batch size is set to 16. The initial parameters of the autoencoder, {θ0, θ′0}, are34

set by drawing samples from a truncated normal distribution similar to the35

technique described by Klambauer [4]. Finally, we use the stochastic gradient36

descent algorithm ADAM [3] to obtain the optimal solution.37

Fig. 1: The architecture of the denoising autoencoder used in testing animation reconstruc-
tion.

2 Traditional manifold learning algorithms38

2.1 Isomap39

The Isomap algorithm has three steps. The first step is to determine the neigh-40

bors of each image and represent these relations as a weighted graph G. In41

our evaluation, we use the k nearest neighbors with edge weights equal to42

the L2 distance of neighboring images in image space. The second step is to43

estimate the geodesic distance dM (i, j) between all pairs of points by comput-44

ing their shortest path distance dG(i, j) in the graph G. The final step ap-45

plies classical multidimensional scaling [5] to the matrix of geodesic distances46

DG = {dG(i, j)} to obtain the set of coordinates vectors Y .47

2.2 Locally Linear Embedding48

The locally linear embedding (LLE) algorithm recovers global structure of a49

nonlinear manifold from locally linear fits. Like Isomap, the first step of the50
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LLE algorithm is to determine the neighbors of each image. Again, we use the51

k nearest neighbors measures by L2 distance in image space. Again, we use the52

k nearest neighbors measured by L2 distance in image space. The second step53

is to determine an optimal set of weights wi,j such that the reconstruction loss54

ε(W ) =
∑

i(xi −
∑

j wi,jxj)
2 is minimized subject to two constraints. First,55

wi,j = 0 if xi and xj are not neighbors, and second,
∑

j wi,j = 1. After the56

optimal weights have been found, the set of coordinates Y are obtained by57

minimizing the function φ(Y ) =
∑

i(yi −
∑

j wi,jyj)
2.58
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Fig. 2: Comparison of LLE errors for different embedding dimension and number of nearest
neighbors.

3 LPIPS evaluation59

We present here some additional details and results of the animation recon-60

struction experiment. Figure 2 shows the error rates for a single test case using61

the LLE metric and different parameter settings for the embedding dimension62

and number of nearest neighbors. Note that very few parameter settings result63

in low error rates. This highlights the fact that traditional manifold learning64

technique requires a lot of parameter tuning to produce good results.65

4 Results66

To consider an input animation as ground truth for a Hamiltonian path se-67

quence, it must not contain cyclic motion. Thus we visually inspect each test68

animation and remove test cases with obvious cyclic motion. Additionally, we69

remove trivial cases where all test methods perfectly reconstruct the anima-70

tion. In total, we tested the reconstruction of 39 animations.71
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Fig. 3: Grid image layout example generated by the proposed method.

About the additional application of our framework, we show in Figure 3 an72

example of a grid image layout generated by the proposed Hamiltonian path73

sequencing method applied to a collection of fish contour images.74
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