
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

MeshWGAN: Mesh-to-Mesh Wasserstein GAN
with Multi-Task Gradient Penalty for 3D
Facial Geometric Age Transformation

Jie Zhang ID , Kangneng Zhou ID , Yan Luximon ID , Tong-Yee Lee ID , Senior Member, IEEE ,
and Ping Li ID , Member, IEEE

Abstract—As the metaverse develops rapidly, 3D facial age transformation is attracting increasing attention, which may bring many
potential benefits to a wide variety of users, e.g., 3D aging figures creation, 3D facial data augmentation and editing. Compared with
2D methods, 3D face aging is an underexplored problem. To fill this gap, we propose a new mesh-to-mesh Wasserstein generative
adversarial network (MeshWGAN) with a multi-task gradient penalty to model a continuous bi-directional 3D facial geometric aging
process. To the best of our knowledge, this is the first architecture to achieve 3D facial geometric age transformation via real 3D scans. As
previous image-to-image translation methods cannot be directly applied to the 3D facial mesh, which is totally different from 2D images,
we built a mesh encoder, decoder, and multi-task discriminator to facilitate mesh-to-mesh transformations. To mitigate the lack of 3D
datasets containing children’s faces, we collected scans from 765 subjects aged 5-17 in combination with existing 3D face databases,
which provided a large training dataset. Experiments have shown that our architecture can predict 3D facial aging geometries with better
identity preservation and age closeness compared to 3D trivial baselines. We also demonstrated the advantages of our approach via
various 3D face-related graphics applications. Our project will be publicly available at: https://github.com/Easy-Shu/MeshWGAN.

Index Terms—Age transformation, 3D face geometry, MeshWGAN, mesh generative adversarial networks, multi-task gradient penalty.

✦

1 INTRODUCTION

3D age transformation is defined as the process of syn-
thesizing 3D meshes of a person’s face across different

ages while preserving their identity. Compared with 2D age
transformation which focuses on 2D face synthesis [1], [2],
[3], [4], [5], [6], the objective of our 3D age transformation is
to synthesize the facial shape and albedo with a normalized
face pose but no illumination information. This can be
applied to many new practical applications, including 3D
aging figures creation in animation, film, virtual and aug-
mented reality (VR/AR), age-invariant 3D face recognition,
3D facial data augmentation, and 3D facial attribute editing.
With the rapid development of depth cameras, particularly
those in mobile phones, it is becoming continually easier
to capture 3D facial data, which could make 3D aging

• Jie Zhang and Ping Li are with the Department of Computing and the
School of Design, The Hong Kong Polytechnic University, Hong Kong.
E-mail: peterzhang1130@163.com, p.li@polyu.edu.hk.

• Kangneng Zhou is with the School of Computer and Communication En-
gineering, University of Science and Technology Beijing, Beijing 100083,
China. E-mail: elliszkn@163.com.

• Yan Luximon is with the School of Design, The Hong Kong Polytechnic
University, Hong Kong, and also with the Laboratory for Artificial
Intelligence in Design, Hong Kong. E-mail: yan.luximon@polyu.edu.hk.

• Tong-Yee Lee is with the Department of Computer Science and Information
Engineering, National Cheng-Kung University, Tainan 70101, Taiwan.
E-mail: tonylee@ncku.edu.tw.

Manuscript received 17 Oct. 2022; revised 27 Apr. 2023; accepted 25 May 2023.
This work was supported in part by the Research Grants Council of Hong
Kong under Grant PolyU 15603419, in part by the National Science and
Technology Council under Grant 110-2221-E-006-135-MY3, Taiwan, and in
part by The Hong Kong Polytechnic University under Grants P0042740,
P0030419, P0043906, and P0044520.
(Corresponding Authors: Yan Luximon and Ping Li.)

transformations more accessible for users. Additionally, the
development of the metaverse could make such applications
more entertaining and popular.

However, creating lifelong transformations of 3D facial
meshes, i.e., synthesizing faces aged 5-70 for any given input
age, is a challenging task. The difficulty of capturing and
collecting 3D face datasets exacerbates this problem. While
the precise facial geometry can be captured using different
commercial scanners, the captured textures are usually ill-
defined and may include shading, shadowing, specularities,
and light source color variation [11]. In this paper, existing
2D facial aging [1] and 3D face reconstruction [7] methods
are combined to produce 3D facial aging textures. We aim
at creating natural and reliable 3D facial geometric age
transformations for facial meshes aged 5-70 years.

Compared to 2D face age transformations, 3D face age
transformations have not been fully explored in the litera-
ture. Partly, the lack of real 3D face datasets has impeded
such studies [9], [12]. While there are many large-scale
2D face images online that can be used for 2D face age
transformations [1], [2], [13], [14], there are limited publicly
available 3D face datasets [15], [16], [17], and their subjects
are mainly adults; child subjects are scarce. Additionally,
the structure of a 3D face is mesh (consisting of vertices
and triangles), which is entirely different from a 2D image.
Hence, although there are many mature 2D face age trans-
formation methods, this difference could potentially cause
such methods to struggle with 3D face age transformations.

To solve the above problems, we first established a new
dataset of 3D children’s faces to expand the existing 3D face
datasets. To increase the number of child subjects in the
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Fig. 1. Bi-directional lifelong age transformation of 3D facial geometries. Given a facial mesh (the red arrow marks the input age group), facial
meshes in different age groups are predicted using our MeshWGAN with a multi-task gradient penalty. Rows 1 and 2: 3D facial aging geometries
and texture with a 30o-side pose. To obtain the 3D facial textures, 2D face images at each age were produced from a projected 2D image using
SAM [1] and the corresponding 3D facial textures were retrieved using an accurate 3D face reconstruction method [7]. Our method can predict the
3D facial shape and size together, which is consistent with previous anthropometric studies showing that human facial aging is mostly represented
by facial growth in children, and by relatively minor shape changes (e.g., skin sagging) and significant texture changes in adults [8], [9], [10].

training dataset, we captured 765 children’s faces (ages 5-17
years) and combined them with the publicly available 3D
face datasets. We followed previously established methods
[2], [18], [19] to approximate the continuous age transfor-
mation using a multi-domain age transferring approach and
predefine six age groups: three for children (ages 5-8, 9-13,
and 14-17), and three for adults (ages 18-29 30-49, and 50-70).
After that, we developed a novel mesh-to-mesh conditional
Wasserstein generative adversarial network (MeshWGAN)
architecture with a multi-task gradient penalty to achieve
3D facial geometric lifelong transformations, as shown in
Fig. 1. This method has the ability to represent the desired
3D facial geometric changes across different ages while
faithfully preserving the 3D facial geometric identity. In-
spired by image-to-image translation architecture (LATS)
[2], we designed a novel mesh generator to achieve a mesh-
to-mesh transformation. The generator consists of an iden-
tity encoder to extract identity features from a facial mesh
input, two age mapping networks to produce latent-and-
style age spaces from a target age, and a decoder to generate
the target facial mesh from the combined latent-and-style
age codes and identity features. This differs from that in
LATS which only includes style age code, but no latent age
code. Additionally, compared with LATS, we also proposed
a novel mesh discriminator with different adversarial losses.

Following previous studies [2], [18], [20], we designed
a multi-task mesh discriminator (with multiple outputs) to
discriminate between multiple age groups [18]. However,
compared to Wasserstein GAN (WGAN) without gradient
penalty (GP) [21] and WGAN-GP [22] specially designed
for a single task, we introduced a novel multi-task gradient
penalty to stabilize our multi-task WGAN training. To com-
pute the multi-task gradient penalty, it was assumed that the
uniformly sampled facial mesh from two facial meshes from
the same age group still belonged to this age group, as facial
meshes from the same age group have similar geometric
features [16], [23]. Each-task gradient penalty was calculated
to ensure the generated face quality in each corresponding

age group. Furthermore, in the mesh discriminator, we
improved the facial transformation quality by merging the
vertex positions and normals as the input, rather than solely
the vertex positions.

To the best of our knowledge, this is the first attempt at
mesh-to-mesh translation for facial age transformation. Our
experimental results demonstrated that our MeshWGAN
can predict the 3D facial shape and size together in different
ages well, which is consistent with prior anthropometric
studies showing that human facial aging is mostly repre-
sented by facial growth in children, and by relatively minor
shape changes (e.g., skin sagging) in adults [8], [9], [10]. The
main contributions of this work are summarized as:

• We propose a novel mesh-to-mesh conditional GAN
architecture for 3D facial geometric age transforma-
tion. Our generator and discriminator, differing from
those in the image-to-image translation architecture
(LATS) [2], can produce 3D facial aging meshes with
better identity preservation and age closeness.

• We develop a multi-task gradient penalty calculation
strategy in the training scheme. It differs from the
classic (single-task) WGAN [21], [22], and can more
effectively stabilize the multi-task WGAN training.

• We establish a supplementary 3D dataset of real chil-
dren’s faces, effectively addressing the issues of defi-
ciency of child subjects in existing 3D face datasets.

2 RELATED WORK

2.1 3D Face Datasets
The cost and difficulty of capturing 3D face scans are much
higher than those for capturing 3D images, resulting in a
comparatively small number of 3D face datasets. However,
there are a few large-scale publicly available 3D head/face
datasets: HeadSpace (1519 subjects aged 1-89 years, pre-
dominantly white) [16], FaceScape (938 subjects aged 16-
70 years, mainly Asian) [15], FaceWarehouse (150 subjects
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Fig. 2. Model architecture. SpiralConv.: spiral convolution [24] as the mesh convolution. FC: full connection. Weight Demodulation proposed in
StyleGAN2 [25] is used in the modulated spiral convolution layers. In the downsampling (upsampling) stages, the new vertices are contracted
(recovered) using the predefined barycenteric coordinates of the closest triangle in the decimated mesh [26], where the decimated meshes are
generated from the original facial mesh using a surface simplification method based on quadric error metrics [27]. The network receives a source
facial mesh and a target age group and outputs a facial mesh of the desired age group. Instead of using image convolution operators, we use
the mesh convolution operator as the basic building block to design a novel conditional mesh generator, consisting of three parts, a mesh identity
encoder that produces a latent identity code, two mapping networks that produces latent and style age codes from an age vector, and a mesh
decoder with modulated convolution layers that produces new meshes from the combination of latent identity and age codes.

aged 7-80 years, various ethnicities) [17], BU-3DFE (100
subjects aged 18-70 years, various ethnicities) [28], Florence
(53 white subjects aged 22-61 years) [29]. These datasets are
deficient in child subjects, making it challenging to develop
methods for lifelong transformations, because facial aging
is mostly represented by significant facial geometric growth
in children and minor facial geometric changes in adults
[12]. To solve this problem, we collected face scans from 765
child subjects aged 5-17 years and combined them with the
available face datasets to use for training and validation of
our MeshWGAN architecture.

2.2 Face Age Transformation
Previous studies have focused on 2D face age transforma-
tions, and many image-to-image translation methods have
been developed to translate a given image of a specific age
into a new image of a different target age while preserving
the individual’s identity. The successes of image-to-image
translations between two domains (e.g., Pix2Pix [30], Cycle-
GAN [31]) or multiple domains (e.g., StarGAN [19], [32],
STGAN [33], FUNIT [18]) provide much inspirations for
the task of 2D face aging. In some methods (e.g., SAM
[1], HRFAE [34], DAAE [5]), facial age transformation is
approached as a continuous-time regression problem to
predict the face image with a specific age. However, these
methods require large datasets of training subjects in each
age and an accurate pretrained age classifier, making them
difficult to apply to 3D face aging. In contrast, many meth-
ods (e.g., Triple-GAN [35], LATS [2], SFA [20]) approximate
this continuous age transformation by representing age with
multiple predefined age groups and use a multi-domain
image-to-image translation to achieve face aging. One bene-
fit of these methods is reducing the quantity requirement for
training datasets. A comprehensive review of 2D face aging
research was presented in a recent survey [36]. However,
compared to 2D face age transformation, which is a well
researched and understood problem, 3D face age transfor-
mation is still underexplored. Thus, we propose a mesh-to-
mesh transformation to achieve 3D facial mesh aging.

2.3 Mesh Convolution Operators
A 3D facial mesh is composed of vertices and triangles,
which is different from 2D images only containing pixels.

As a result, image convolution operators cannot be applied
directly to the task of 3D face age transformation. Therefore,
some studies [37], [38], [39] have converted the 3D facial
meshes into 2D domain maps first and then applied stan-
dard 2D convolution operators to process them. Many stud-
ies [26], [40] have attempted spectral graph convolutions
[41] on representations of 3D facial meshes. To process 3D
mesh efficiently, a refined spiral convolution (Spiral++) [24],
[42] has been developed for 3D facial mesh generation and
representation [43], [44]. This mesh convolution operator
sufficiently leverages the local geometric features of the
mesh surface, their superiority over previous state-of-the-
art methods has been demonstrated via experimental results
[24], [44]. Therefore, in this study, we adopted Spiral++ as
the mesh convolution operator and further enhance our
network using weight demodulation in the generator and
a multi-task gradient penalty in the discriminator to create
3D facial aging models.

3 APPROACH

3.1 Overview
Motivated by unpaired image-to-image GAN architectures
[2], [18], [19], [31], [32], we propose a multi-domain mesh-
to-mesh Wasserstein GAN architecture to achieve lifelong
3D facial geometric age transformations. Since there are no
existing large-scale face datasets, we follow previously es-
tablished methods [2], [18], [19] to approximate continuous
age transformation using a multi-domain age transferring
approach and predefine six age groups: three for children
(ages 5-8, 9-13, and 14-17), three for adults ( ages 18-29,
30-49, and 50-70). Furthermore, to achieve the continuous
age transformation, an age latent code interpolation is used
in our mesh generator. Instead of image convolution, we
use a mesh convolution (spiral convolution [24], [44]) as a
basic building block to design a novel generative adversarial
network architecture consisting of a single conditional mesh
generator (see Fig. 2) and a single multi-task discriminator
(see Fig. 3). The conditional mesh generator receives a
source facial mesh and a target age group and outputs a fa-
cial mesh of the desired age group, consisting of three parts:
a mesh identity encoder to produce a latent identity code,
two mapping networks to produce a latent/style age code
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Fig. 3. Training scheme. Two facial meshes x̂s and x̂t are sampled from a source age group s and a target age group t (t ̸= s), respectively. Note
that a multi-task gradient penalty was developed to stabilize the Wasserstein GAN training.

from an age vector, and a mesh decoder to produce new
meshes from the combination of the identity and age codes.
In the multi-task discriminator in Fig. 3, we combine the
vertex positions and normals as input, instead of solely the
vertex positions. Benefiting from WGAN [21] and WGAN-
GP [22], we introduced a multi-task gradient penalty to
stabilize our WGAN training. To compute the multi-task
gradient penalty, we uniformly sample a new facial mesh
between two facial meshes from the same age group.

3.2 Foundations

In our architecture, the spiral convolution is used as a core
building block, which sufficiently leverages the local geo-
metric features of the mesh surface. The spiral convolution
operator for the ith vertex vi based on its features xi is
defined as follows [24]:

x
(t)
i =

∐(t)

 ⊎
j∈S(i,l)

x
(t−1)
j

 , (1)

where
∐(t) and

⊎
donate multi-layer perceptrons and con-

catenation operation, respectively, and S(i, l) is a dataset in
a predefined spiral sequence consisting of l vertices from
a concatenation of k-rings. An example of Spiral++ on a
facial mesh is shown in Fig. 4. Before training model with
Spiral++, the spiral length needs to be determined firstly
and then the ordered set of each vertex is confirmed using
spiral pattern-based encoding approach [42].

3.3 Architecture

Our model architecture of inference is shown in Fig. 2 and
the age encoder and multi-task discriminator are shown in
Fig. 3. The conditional generator receives an input facial
mesh and a target age group and outputs a facial mesh
of the desired age group. In our pre-processing steps, the
input facial meshes x̂ are parameterized and aligned to a
facial mesh template m̄.

Conditional Generator We use a predefined vector
transformer (proposed in LATS [2]) to convert the input
target age group i into a vector αi with l × n elements:
αi = νi + s, s ∼ N (0, 0.22· I), where n is the number of
age groups, νi is an l × n element vector that contains ones
from l× i to l× (i+1)− 1 and zeros elsewhere, and I is the
identity matrix. Then, two mapping networks Mz and Mt
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Fig. 4. Example of Spiral++ [42] on a facial mesh. There is one parame-
ter (spiral length) to determine the number of vertices in ordered set.

with an eight-layers MLP network embed an age vector α
into a latent code zage and a style code tage with unified Ne

elements: zage = Mz(α) and tage = Mt(α), respectively.
The identity encoder Eide contains four downsampling

layers followed by one fully connected layer. It takes the
mesh difference x between an input facial mesh x̂ and the
facial template m̄ : x = x̂ − m̄, and extracts its geometric
structure features with Ne elements as a latent identity code:
zide = Eide(x). The benefit of inputting vertex positions
differences rather than vertex positions is a reduction in the
network learning difficulty, because the facial template has
already provided the basic facial structure information in
the network. The decoder F contains one fully connected
layer and four upsampling layers. To control the facial
geometric detail changes, we apply a weight demodulation
with the style code tage (proposed in StyleGAN2 [25]) in
the modulated spiral convolution layers as shown in Fig. 2.
It receives the combination code z with Ne × 2 elements
(concatenated from the latent age zage and identity zide
code), and outputs a new mesh difference y at the original
size: y = F (z) = F ([zide, zage], tage). The new facial mesh ŷ
can be calculated using the mesh difference y and the facial
template m̄: ŷ = y+ m̄. The output mesh difference y of our
overall generator G from an input facial mesh difference x
and an input target age vector α is:

y = G(x, α) = F ([Eide(x),Mz(α)],Mt(α)) . (2)

Multi-Task Discriminator To distinguish between real
and fake meshes from multiple age groups, we develop
a multi-task mesh discriminator (see Fig. 3). For a real or
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fake facial mesh from age group i, we penalize only the i-th
output. The discriminator D contains eight downsampling
layers and four fully connected layers with a minibatch
standard deviation to output n values. In each downsam-
pling stage, the number of vertices is reduced by half. In
the discriminator, we merge the mesh difference x and
normals n̂ as the input [x, n̂], rather than solely using the
vertex positions. Combined with vertex positions, the vertex
normals, as another critical 3D facial features, are used to
enhancing the discriminator’s distinguishing ability, thereby
improving facial transformation quality.

Age Encoder An age encoder of the facial mesh is not
used for inference, but only in training (see Fig. 3). The
age encoder Eage enforces a mapping of the input facial
mesh difference x into its corresponding age vector α:
α = Eage(x). The age encoder contains four downsampling
layers (the same ones as that of the identity encoder) and
four fully connected layers to output a vector with l × n
elements. In the generator, discriminator and age encoder,
the spiral convolution [24] is used as a basic building block.
In the downsampling (upsampling) stage of Fig. 2, the
new vertices are contracted (recovered) using predefined
barycenteric coordinates of the closest triangle in the dec-
imated mesh [26] and the number of vertices is decreased
(increased) fourfold.

3.4 Training

To calculate the multi-task gradient penalty and mitigate the
imbalance influences between age groups, two facial meshes
(x̂s and x̂t) are sampled from a source age group s and
a target age group t (t ̸= s), respectively, in each training
iteration. Fig. 3 shows an overview of our training scheme.
Then, three new facial mesh differences are produced from
the conditional generator, using

yrec = G(xs, αs), ytra = G(xs, αt), ycyc = G(ytra, αs),
(3)

where, yrec is the self-reconstructed mesh difference at
source age group s, ytra is the transformed mesh difference
at target age group t and ycyc is the cyclic transformed mesh
difference at source age group s from the mesh difference
ytra. The corresponding facial meshes are retrieved based
on the facial mesh template m̄, via:

ŷres = yrec + m̄, ŷtra = ytra + m̄, ŷcyc = ycyc + m̄. (4)

These reconstructed meshes are used to compute their
vertices normals n̂res, n̂tra and n̂cyc. For each output in
multi-task discriminator, the critic losses for real and fake
facial meshes, and their gradient penalties are calculated.
Particularly, to calculate their gradient penalties, the real
and fake facial meshes should come from the same age
group, and their uniformly sampled facial mesh is also
needed. Hence, a new facial mesh difference xu is uniformly
sampled along straight lines between the target xt and
transformed ytra mesh difference as:

xu = ϵ× ytra + (1− ϵ)× xt, (5)

where ϵ is a random number: ϵ ∼ U [0, 1] and the corre-
sponding facial normals are n̂u. These inputs and outputs
are used to calculate the objective functions of the model:

adversarial loss, self-reconstruction loss, cycle consistency
loss, identity preservation loss, and age consistency loss.

Adversarial Loss An adversarial loss Ladv(G,D) of
WGAN is used to criticize the fake ytra and real xt facial
meshes’ differences from the same age group t, and enforce
the Lipschitz constraint by calculating a gradient penalty for
the random samples xu, as shown in Fig. 3:

Ladv(G,D) =Ext,t[D([xt, n̂t])]− Eytra,t[D([ytra, n̂tra])]+

λExu,t[(∥ ▽[xu,n̂u] D([xu, n̂u])∥2 − 1)2],
(6)

where λ is usually set as 10 [22]. For a real, fake or sampled
facial mesh from age group i, only the i-th element in
the output vector of discriminator D is used as the final
discriminating result. Unlike WGAN-GP [22] for single-
task discriminator, our gradient penalty calculation strategy
is especially designed for multi-task discriminator. Addi-
tionally, The objective of considering the combination of
vertex positions and normals is to improve the discriminator
distinguish ability.

Self-Reconstruction Loss A self-reconstruction loss
Lrec(G), consisting of facial vertex-wise positions’ and nor-
mals’ consistency losses between xs and yrec, is employed
to force the conditional generator to learn the facial mesh
identity translation as:

Lrec(G) =
1

N

∑
∥xs − yrec∥22 +

1

N

∑
(1− cos(n̂s, n̂rec)),

(7)
where, N is the number of vertices in the facial mesh.
The normals’ consistency loss is calculated by measuring
the cosine similarity cos(·) of each per-vertex normal to
guarantee the mesh surface smoothness.

Cycle Consistency Loss A cycle consistency loss Lcyc(G)
[31] is enforced to help maintain the facial mesh identity,
which also consists of facial vertex-wise positions’ and
normals’ consistency losses between xs and ycyc as:

Lcyc(G) =
1

N

∑
∥xs − ycyc∥22 +

1

N

∑
(1− cos(n̂s, n̂cyc)).

(8)
Identity Preservation Loss An identity preservation loss

Lide(G) is used to enforce the generator to maintain the
input facial mesh identity by minimizing the L1 distance
between the latent identity code of the input xs and trans-
formed ytra facial meshes as:

Lide(G) = ∥Eide(xs)− Eide(ytra)∥1. (9)

Age Consistency Loss An age preservation loss Lage(G)
is used to enforce the generator to represent the facial
geometric features in the target age group by minimizing
the the L1 distance between the input αs, αt and output age
vector from the age encoder Eage as:

Lage(G) = ∥Eage(xs)− αs∥1 + ∥Eage(ytra)− αt∥1. (10)

According to the above, G and D are trained to minimize
the following optimization loss functions as:

min
G

max
D

Ladv(G,D) + ωrecLrec(G) + ωcycLcyc(G)+

ωideLide(G) + ωageLage(G),
(11)

where ωrec, ωcyc, ωide, and ωage are the hyper-parameters
for the respective loss terms.
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(a) (b) (c) (d)
Fig. 5. Examples of our child face scans (on the left arrow) and the re-
sulting parameterized faces (to the right of each arrow) created using the
NICP algorithm. We captured and registered the faces of 765 children
ages 5-17 years, around 30 female and 30 male children of each age,
to compensate for the lack of child subjects in the existing datasets.

Fig. 6. Age and sex information of subjects in all collected face datasets.
Our newly created child dataset includes 765 subjects ages 5-17 years,
which accounts for 85% of the total children subjects in training dataset.

4 EXPERIMENTS

4.1 3D Face Datasets

To establish a large 3D face dataset with sufficient age
information, we collected existing 3D head/face datasets,
including HeadSpace [16], FaceScape [15], FaceWarehouse
[17], BU-3DFE [28], Florence [29], and Adult-Heads [45]. To
compensate for this lack of children subjects, we captured
765 children faces ages 5-17 years, as shown in Fig. 5. More
information about our children’s head dataset is provided
in our supplementary file. All facial scans were parameter-
ized using an optimal step nonrigid iterative closest point
(NICP) algorithm [46] and aligned to a facial template using
procrustes analysis (PA) [47]. All facial meshes have 5,000
vertices and 9,449 triangles. Finally, these datasets - Adult-
Heads, HeadSpace, FaceScape, FaceWarehouse, BU-3DFE
and Florence, our newly created Children-Faces - provide
1,763, 1,242, 823, 150, 96, 51, and 765 faces, respectively, for
a total of 4,890 subjects aged 2-90 years.

These faces were classified into six age groups: three for
children (ages 5-8, 9-13, and 14-17) and three for adults (ages
18-29, 30-49, and 50-70). The statistical information of all
subjects is shown in Fig. 6. There are around 70.1% Chinese
and 29.9% Caucasian. In each group, there are 285, 364, 253,
1,771, 1,165 and 950 identities in sequence, respectively. In
total, there are 4,788 identities (2,393 female and 2,395 male),
where 75/75 subjects from various age groups of HeadSpace
dataset were used as the validation/testing data and the
remaining 4,628 as the training data.

Input 5-8 9-13 14-17 18-29 30-49 50-70
c

a

b

Fig. 7. Qualitative results of ablation study for input age codes in gen-
erator (the red arrow marks input age group). (a) With a single latent
age code. (b) With a single style age code. (c) With a combination of
latent and style age codes. Note that generator (c) has the advantages
of both generators (a) and (b), and achieve facial geometric aging while
maintaining consistent identity features. Generator (a) is almost identical
to Neural3DMM [44], and generator (b) is similar to that of LATS [2]
which applies weight demodulation [25] to all layers of the decoder.

4.2 Implementation and Training Details
To train our networks, the Adam optimizer [48] was used
with an initial learning rate of 10−3, total iterations of
roughly 200k, and a batch size of 16. The learning rate
was decayed by 0.5 after 150, 300, and 450 epochs, and the
learning rate of the mapping network was decreased by a
scale of 0.1. Our model was implemented via Pytorch [49]
and PyTorch Geometric [50]. All hyper-parameters - ωrec,
ωcyc, ωide, and ωage - were set as 1. In the generator, the
length l × n in the age vector was set as 50×6 and the
lengths Ne of latent age/identity code and style age code
were set as 256. Since the facial mesh parameterization is a
well-researched and -understood problem, the input facial
mesh is produced from face/head scans using the NICP
algorithm [46] and aligned to a facial template using the
PA method [47]. The output facial meshes are upsampled to
a new high-resolution mesh (847,900 vertices and 1,693,440
triangles) for generating high-resolution texture and high-
detail geometry (see our supplementary file).

4.3 Ablation Study
We performed four qualitative and quantitative ablation
studies in order to prove our main claims, including the
combination of latent and style age codes in the generator,
the adversarial loss with a multi-task gradient penalty in the
discriminator, the input combination of vertex positions and
normals in the adversarial loss, and cycle consistency loss.

4.3.1 Qualitative Analysis
In the first study, we compared the single and combination
usages of latent and style age codes to demonstrate the su-
periority of our generator architecture, as shown in Fig. 7. In
Fig. 7(a), the generator with a single latent age code is almost
identical to Neural3DMM [44] also based on Spiral++ (their
main difference is that the input of generator in Fig. 7(a) is
facial mesh with 5,000 points, while that of Neural3DMM is
head mesh with 5,023 points). The generator in Fig. 7(b) is
similar to LATS [2], which applies the weight demodulation
[25] with a single style age code to all layers of the decoder,
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Fig. 8. Qualitative results of ablation study for adversarial loss and input
vertex information in multi-task discriminator (the red arrow marks input
age group). (a) Using classic multi-task adversarial loss in LATS [2].
(b) Inputting a single vertex position. (c) Using our adversarial loss with
multi-task gradient penalty and inputting combination of vertex positions
and normals. Note that compared with discriminator (a), our discrimina-
tor (c) has better discriminating ability, thereby making the generator
produce better facial aging geometries; compared with discriminator
(b), our discriminator (c) also has better distinguishing ability, thereby
making the generator produce more natural facial aging geometries.

Fig. 9. Trends of generator’s combined loss for using two different
adversarial losses in multi-task discriminator. While classic GAN suffers
from overfitting, ours shows consistent stability in training GAN.

including the full connection and the spiral convolution lay-
ers. For the generator in Fig. 7(a), the facial geometries have
consistent identity features, but nearly remain unchanged
in the three adult groups (indicated by the red rectangles).
Particularly, the chin regions of the elderly (50-70) are nearly
same as those of the young (18-29), which are inconsistent
with the actual situation where the elderly have loose and
sagging skin on the chin. In comparison, for the generator in
Fig. 7(b), the facial geometries have distinct aging features
for children and adult groups, but inconsistent identity
features. Specifically, compared to the input face, the child
face (5-8, indicated by the red rectangles) has a long and
pointed chin. Fortunately, our generator in Fig. 7(c) using
both latent and style age codes, can overcome the limitations
of both generators and obtain their respective advantages
to achieve facial geometric aging with consistent identity
features, which proves the superiority of our combination
usage of latent and style age codes.

In the second study, we compared our adversarial loss
with a multi-task gradient penalty to a classic multi-task ad-
versarial loss (which has been widely used in previous stud-

Input 5-8 9-13 14-17 18-29 30-49 50-70
b

a

Fig. 10. Qualitative results of ablation study for cycle consistency loss in
the training scheme (red arrow marks the input age group). (a) Without
cycle consistency loss. (b) With cycle consistency loss. Note that our
training scheme (b) can produce more natural facial aging geometries.

(a) (b)

Methods
Identity

Preservation
Age

Closeness
1-MeshWGAN 0.846 ± 0.028 0.008 ± 0.014
2-MeshWGAN with a single vertex position 0.837 ± 0.055 0.036 ± 0.024
3-MeshWGAN without cycle consistency loss 0.836 ± 0.055 0.118 ± 0.080
4-MeshWGAN with a single latent age code 0.826 ± 0.029 0.317 ± 0.142
5-MeshWGAN with a single style age code 0.804 ± 0.047 0.014 ± 0.008
6-MeshWGAN with classic adversarial loss 0.771 ± 0.037 0.261 ± 0.128

Fig. 11. Quantitative results of ablation study (using the paired-samples
t-test). (a) Identity preservation between aging and original 3D facial
meshes: average (± standard deviation) cosine similarity of latent iden-
tity codes. (b) Age closeness of aging 3D facial meshes: average (±
standard deviation) Euclidean distance of age vectors. ns (no signifi-
cance) =p>0.05; ∗ ∗ ∗ =p ≤ 0.001; ∗ ∗ ∗∗ =p ≤0.0001.

ies, e.g., FUNIT [18], SAF [20] and LATS [2]). This classic loss
was also fed by vertex positions and normals of facial mesh
in this study, using Ladv(G,D) = Ext,t[logD([xt, n̂t])] +
Eytra,t[log(1 − D([ytra, n̂tra]))]. Here, a non-saturating ad-
versarial loss with R1 regularization, proposed in LATS
[2], was used to replace our adversarial loss to train our
network. Their comparison results are illustrated in Fig. 8(a)
and Fig. 8(c), clearly showing that a generator using classic
adversarial loss in Fig. 8(a) can easily lead to distorted facial
geometries (indicated by the red rectangles), including eye
and ear regions. In comparison, with our adversarial loss in
Fig. 8(c), our generator can produce high-quality natural fa-
cial geometries. To further demonstrate the ability of our ad-
versarial loss to stabilize training, we compared the training
loss Lcom(G) curves with and without our gradient penalty
in multi-task discriminator (see Fig. 9), where Lcom(G) =
ωrecLrec(G) + ωcycLcyc(G) + ωideLide(G) + ωageLage(G).
While classic GAN suffers from overfitting, our proposed
approach shows consistent stability in training GAN. It
further demonstrates the advantage of using our adversarial
loss with a multi-task gradient penalty.
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Input Facial Mesh 5-8 18-29 50-70 5-8 18-29 50-70

Input Facial Mesh 5-8 18-29 50-70 5-8 18-29 50-70
(a1) (b1)

(c1) (d1)

Input Facial Mesh 5-8 18-29 50-70 5-8 18-29 50-70

Input Facial Mesh 5-8 18-29 50-70 5-8 18-29 50-70
(a2) (b2)

(c2)  (d2)
Fig. 12. Qualitative comparisons with 3D trivial baselines using the same texture transformation from SAM [1]. (a) Baseline 1 without geometric
transformation. (b) Baseline 2 with the same geometric transformation among age groups. (c) MeshWGAN with unified geometric sizes. (d)
MeshWGAN. Note that the unmatching of the textures and geometries in trivial baselines (a) and (b) is noticeable, where the kid’s and elder’s
faces resemble similar even though with different textures; in comparison, our geometric changes between different age groups in our MeshWGAN
(c) and (d) are significant (including facial sizes and shapes), especially our kid’s facial geometries have fatter cheek and receding chin, which is
more consistent with the objective anthropometric features.

In the third study, we showed the importance of using
combined vertex positions and normals in the adversarial
loss to improve facial transformation quality. Fig. 8(b) and
Fig. 8(c) show two sets of facial geometries using a dis-
criminator with combined vertex positions and normals. For
the discriminator in Fig. 8(b), that received only a single
vertex position, it is evident that the facial geometries of the
children’s age groups do not resemble the input facial mesh,
especially the age groups 5-8 and 14-17. As indicated by the
red rectangles (teenager, 14-17), the shapes of cheek, eye,
and mouth regions clearly do not look like those of input
face; and the overall size is also nearly same as that of the
adult (18-29). However, in reality, the teenager’s face size
should be less than that of the adult. This could be because
the single facial vertex position limit the discriminator’s
distinguishing ability. In comparison, our discriminator in
Fig. 8(c) with the combination of vertex positions and
normals was able to make our generator produce facial
aging geometries with better identity preservation for the
Caucasian, even when most of the child subjects in the
training dataset are East Asian.

In the fourth study, we demonstrated the importance
of using cycle consistency loss to learn age codes in the
3D facial age transformations. Fig. 10 shows two sets of
facial geometries using a training scheme without/with
cycle consistency loss. For the training scheme without
cycle consistency loss in Fig. 10(a), it can be found that the
facial geometries of the younger age groups (5-8 and 9-13)
(indicated by the red rectangles) have many folds and there
are minor but not noticeable changes in shape between the
14-17 and 18-29 groups (indicated by the red rectangles),
which is inconsistent with previous anthropometric studies
showing that the 3D facial shape grows from adolescence
to adulthood [10]. By contrast, our training scheme in Fig.
10(b), which includes cycle consistency loss, can produce
more natural aging of facial geometries, which indicates that
cycle consistency loss should be included in the training
scheme to produce high-quality facial aging.

Fig. 13. Visualization of average facial mesh and their differences. (a)
Average facial meshes in each age group. (b) Per-vertex distance of
combined shape and size (lower left) and shape with unified size (upper
right) between two age groups. In the (i, j) per-vertex distance map,
the red/blue(green) indicate that the vertex in the ith face mesh is more
outwards/inwards on the jth face mesh surface, where i/j is the location
of row/column, i/j=1,2,...,6.

4.3.2 Quantitative Analysis

To further support our main claims, in addition to the qual-
itative analysis, quantitative analysis of the ablation study
was also conducted as shown in Fig. 11, including Fig. 11(a)
identity preservation, and Fig. 11(b) age closeness. To com-
pare their abilities of identity preservation, the cosine simi-
larity of latent identity codes between aging and original 3D
facial meshes was computed. To compare their abilities of
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Fig. 14. Qualitative comparisons with state-of-the-art facial aging methods (the red arrow marks input age group). (a) LATS [2] with Deep3DFace
[7]. (b) DLFS [51] with Deep3DFace [7]. (c) SAM [1] with Deep3DFace [7]. (d) Our MeshWGAN with 3D facial textures reconstructed using 2D aging
images from SAM [1].

age closeness, the Euclidean distance of age vectors for each
aging 3D facial mesh was also calculated. The quantitative
results (using the paired-samples t-test) in Fig. 11 show our
MeshWGAN has the best global performance, our proposed
adversarial loss with multi-task gradient penalty in discrim-
inator can most significantly improve the quality of identity
preservation, and our proposed combination of latent and
style age codes in generator can most significantly increase
the accuracy of age closeness. In particular, there are two
major differences between MeshWGAN and LATS [2]: the
generator and discriminator. In the first ablation study, the
qualitative and quantitative comparison of our generator in
Fig. 7(c) and LATS’s generator [2] in Fig. 7(b) demonstrated
that the architecture of our generator is more reasonable and
competitive, as our generator can produce the facial meshes
with more consistent identity and more accurate age. In
the second ablation study, the qualitative and quantitative
comparison of adversarial loss in our discriminator in Fig.
8(c) and LATS’s discriminator [2] in Fig. 8(a) further demon-
strated that our adversarial loss can stabilize training and
produce much better results.

4.4 Method Evaluations
Since there are no objective metrics to evaluate the quality
of 3D facial age transformation, qualitative comparisons and
evaluations were performed to demonstrate our superiority.

4.4.1 Comparisons With 3D Trivial Baselines
To demonstrate the superiority of our method, we compared
ours with two 3D trivial baselines: 1. 3D aging faces without
geometric transformation, and 2. 3D aging faces with same
geometric transformation among age groups. 3D facial tex-
tures of SAM were retrieved using a Deep3DFace-based [7]
3D facial texture mapping method (its details are provided
in our supplementary file) and applied into all facial aging
meshes, as shown in Fig. 12.

In the first baseline without geometric transformation of
Fig. 12(a), the unmatching of the textures and geometries is
noticeable. Particularly, the faces of the kids aged 5-8 years
still resemble the elder, even though it has the rejuvenated
textures. This is because that the original facial geometry
of the elderly has sagging skins. In comparison, our facial
shapes of the younger with unified geometric sizes in Fig.
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TABLE 1
Quality evaluation of facial geometries without textures, including

Identity Preservation (IP) and Age Closeness (AC). Compared to LATS
[2] and SAM [1] with Deep3DFace [7], our MeshWGAN can generate

3D facial geometries with better age closeness and identity
preservation.

Item Method 5-8 9-13 14-17 18-29 30-49 50-70 Overall

IP
LATS [2] 0.11 0.11 0.13 0.08 0.09 0.10 0.10 ± 0.08
SAM [1] 0.18 0.18 0.16 0.13 0.11 0.09 0.14 ± 0.11

Ours 0.71 0.71 0.71 0.79 0.79 0.81 0.75 ± 0.17

AC
LATS [2] 0.55 0.37 0.31 0.41 0.45 0.41 0.42 ± 0.09
SAM [1] 0.49 0.33 0.13 0.28 0.39 0.19 0.30 ± 0.09

Ours 0.77 0.76 0.75 0.74 0.74 0.70 0.74 ± 0.05

12(c) are more natural and harmonious when the smooth
facial geometries and rejuvenated textures are integrated.
Especially, our kid’s facial geometries has fatter cheek and
receding chin, which is more consistent with the objective
anthropometric features.

In the second baseline, average facial meshes m̄i in
each age group were calculated (see Fig. 13(a)) and their
mesh difference di,j of two age groups were computed
(di,j = m̄i − m̄j , see the lower left of Fig. 13(b)) and
applied into the input facial mesh x̂j (in jth age group) to
produce the facial aging meshes: x̂i = x̂j + di,j , as shown
in Fig. 12(b). It can be clearly found that facial meshes of
the younger still remain the facial features of the elderly. By
contrast, our rejuvenated facial meshes in Fig. 12(d) have
more smooth surfaces, which totally differs from these in
Fig. 12(b). This comparison also shows such single facial
size changes cannot achieve the 3D facial geometric aging.

To further demonstrate the necessity of facial geometric
changes for 3D facial aging, we calculated the per-vertex
shape or size distance of pairwise average facial meshes in
different age group, as shown Fig. 13(b). The results show
that the pairwise facial shapes and dimensions are signifi-
cantly different and the faces change with the increasing age,
which is consistent with previous anthropometric studies
[8], [9], [10]. It indicates that the objective facial geometric
changes should be achieved for 3D facial aging, including
facial shapes and sizes.

4.4.2 Comparisons With 2D Aging Methods
Compared to 2D face aging, 3D facial geometric age trans-
formation is still an underexplored problem. Therefore, we
compared our facial geometric aging results with the 3D
facial shapes reconstructed from 2D facial aging results
produced by three state-of-the-art methods (LATS [2], DLFS
[51] and SAM [1]). Both LATS and DLFS are multi-domain
translation methods using different age groups, but we were
able to leverage its age latent space to produce face images
in our age groups. Based on the generated face images,
3D facial shapes were reconstructed using a state-of-the-
art 3D face reconstruction method (Deep3DFace) [7]. For
our MeshWGAN, because of our 3D facial geometric aging
without texture changes, the 3D aging face meshes were
rendered and projected using the reconstructed textures
from SAM [1] for better visual perception and comparison.
Particularly, to reduce the mesh-and-texture mismatches in
the elders’ facial meshes, we leveraged a pix2pixHD [52]

TABLE 2
Quality evaluation of facial geometries with textures, including Identity

Preservation (IP), and Age Closeness (AC). Our aging facial
geometries can significantly improve the original aging visual quality of

SAM [1].

Item Method 5-8 9-13 14-17 18-29 30-49 50-70 Overall

IP SAM [1] 0.64 0.66 0.65 0.85 0.79 0.89 0.74 ± 0.13
Ours 0.92 0.93 0.91 0.92 0.87 0.93 0.91 ± 0.10

AC SAM [1] 0.46 0.42 0.41 0.37 0.36 0.32 0.39 ± 0.04
Ours 0.54 0.58 0.59 0.63 0.64 0.68 0.61 ± 0.16

to predict displacement UV map to express and produce
3D facial detailed geometry. Its details are provided in our
supplementary file.

The qualitative comparisons of different age transfor-
mation methods are shown in Fig. 14. The facial shapes
reconstructed using SAM do not contain size information
and are nearly unchanged with increasing age. The facial
shapes created using LATS/DLFS change with age for chil-
dren ages 5-17, but they are similar for adults ages 18-70.
Furthermore, the reconstructed facial shapes do not visually
resemble the input facial mesh. In comparison, the aging
pattern of our facial geometries is consistent with previ-
ous anthropometric studies showing that the human facial
aging is mostly represented by facial growth in children,
and by relatively large texture changes and minor shape
changes in adults [8], [9], [10]. In particular, our elderly
facial geometries have marked skin sagging on the cheek
and chin regions, and wrinkles on the forehead and the
corners of eyes. In addition, our facial geometries visually
resemble the input facial mesh, which indicates that they
have consistent identity features. Thereby, it is clear that
our facial geometries are an improvement over the visual
quality of 3D aging via SAM when the reconstructed 3D
facial textures from SAM are used.

4.4.3 Human Evaluations
To demonstrate the superiority of our MeshWGAN fur-
ther, we conducted a user perceptual study to evaluate
our results and those created using LATS [2] and SAM
[1]. We recruited thirty respondents with experience in 3D
graphics/animation design. They were asked to evaluated
each generated facial mesh in terms of identity preservation
and age closeness. In the experiment, ten facial meshes
were input into each method, and the corresponding facial
meshes for each of our six age groups are rendered with
solid colors using the same direct lighting environment, as
well as projected into two color images (512×512 pixels)
showing front and 30o-side views respectively.

For measuring identity preservation, we mixed and
showed the rendered images (with the same identity and
age group) generated from three methods side-by-side, and
asked participants to select which image best portrayed an
individual with a consistent identity. The evaluated metric
was defined as the percentage of respondents who preferred
each method. To measure age closeness for each method, we
adopted another approach in which the participants were
asked to assign the mixed rendered images of the same
identity in each of our six age groups to the estimated age



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) (b)
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Fig. 15. Overall human evaluation results from 30 respondents. (a) Iden-
tity preservation evaluation of facial geometries without textures. (b) Age
closeness evaluation of facial geometries without textures. (c) Identity
preservation evaluation of facial geometries with the same textures from
SAM [1]. (d) Age closeness evaluation of facial geometries with the
same textures from SAM [1]. ∗ =p ≤ 0.05; ∗∗ =p ≤ 0.01; ∗ ∗ ∗∗ =p
≤0.0001. Note that the paired-samples t-test results show that the p-
value between our MeshWGAN and LATS/SAM in each subfigure is less
than 0.05, which indicates that our method is more competitive.

group. The evaluated metric was defined as the percentage
of images correctly assigned by respondents. Their evalu-
ation results are shown in Tables 1 and overall evaluation
comparisons are shown in Fig. 15(a) and Fig. 15(b). The
paired-samples t-test results show the p-values between our
MeshWGAN and LATS/SAM in terms of identity preser-
vation and age closeness are less than 0.05, which indicates
that our method can produce aging facial geometries with
more consistent identity and age features.

To further demonstrate that our facial geometries can
improve the visual quality of 3D aging in images rendered
using SAM, we used the same method to measure identity
preservation and age closeness of images generated via two
methods - our MeshWGAN aging facial geometries with
SAM textures, and SAM aging facial geometries with SAM
textures - as shown in Table 2, Fig. 15(c) and Fig. 15(d). The
paired-samples t-test result had a p-value of less than 0.05,
which indicates our aging facial geometries can significantly
improve the original visual quality of facial aging images
generated by SAM. This also demonstrates the superiority
to achieve 3D facial texture and geometry aging together.

4.4.4 Age Interpolation

Although we only used facial meshes from different age
groups to train our model, there is one approach to achieve

Input 5-8 9-13 14-17 18-29 30-49 50-70

Fig. 16. Continuous age transformations using interpolation of latent and
style age codes (the red arrow marks input age group).

Fig. 17. Head completion (second row) and avatar creation ( third row)
from 3D aging faces (first row). With our faces, full heads can be
predicted using a face-to-head model regression method [54]. In the
third row, changes of hair and hairstyle are not represented.

continuous age transformations using age code interpola-
tion, as shown in Fig. 16. Our model possesses the ability to
generate continuous age transformations by interpolating a
new latent age code z̈age between two other latent age codes
ziage and zi+1

age generated from two neighboring age groups i
and i+1: z̈age = ϵ×ziage+(1−ϵ)×zi+1

age , as well as inserting
a new style age code ẗage between the two other style
age codes tiage and ti+1

age generated from two neighboring
age groups i and i + 1: ẗage = ϵ × tiage + (1 − ϵ) × ti+1

age

where ϵ is an interpolation parameter within [0, 1]. Then, a
new facial mesh ÿ is produced using the decoder F from
a concatenation of the input latent identity code zide, the
new latent age code z̈age and the new style age code ẗage:
ÿ = F ([zide, z̈age], ẗage). From Fig. 16, it can be seen that
there is obvious continuous facial geometric growth with
preserved identity, which indicates our method successfully
achieved continuous age transformations using the interpo-
lation of latent and style age codes.

4.4.5 Runtime Analysis
Runtime performance was tested on a computer with an
NVIDIA GeForce RTX 3090 GPU (24GB of memory). After
a face scan is received, there are only two main steps: facial
mesh parameterization and aging face generation. Mesh pa-
rameterization from a face scan using AMSGrad-based [53]
NICP algorithm, as an optimization method, takes around
77.5 seconds. Then, the generation of facial meshes in our six
age groups using our MeshWGAN took around 2.4 seconds.

4.5 Application Scenarios
Our proposed 3D face age transformation method can be
applied to many face-related 3D graphics applications, e.g.,
3D aging figures/avatar creation, 3D age-invariant face
recognition, 3D facial data augmentation, 3D facial attribute
editing. In this section, we show two typical applications.
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(a) (b) (d)(c)
Fig. 18. Generalization ability comparison of two 3DMM. (a) Original 3DMM. (b) Augmented 3DMM, with average shape (shown in center) and first
four principal components (PCs) with a weight of 3σi (white circle labels) and -3σi (black circle labels), where σi is the standard deviation of the
corresponding PC. (c) Cumulative explained variations. Respectively, 44 PCs in original/augmented 3DMM explain 99.50%/97.94% of their training
dataset variance. (d) Mean reconstructed mesh errors.

4.5.1 3D Aging Avatar Creation

Creating realistic digital humans is an increasingly impor-
tant task in various immersive applications [55] and 3D
aging avatar design can bring much fun to this task, es-
pecially in the metaverse. Furthermore, 3D aging figures in
animation are still created manually by professional design-
ers, a manual workload that can be significantly reduced
with the assistance of our proposed method. Fig. 17 shows
examples of head completed and avatar created from our
3D aging faces. A face scan can be easily captured using 3D
scanners, e.g., Artec Eva3D scanner, smartphone 3D scanner,
and then parameterized and aligned with a facial template
using using the NICP algorithm [46] and PA method [47].
With aging faces derived from the parameterized face, the
full heads can be predicted using a face-to-head model
regression method [54], [56] and then transferred to the
avatar, with face preservation based on a digital human face
template with hair and other accessories.

4.5.2 3D Face Data Augmentation

3D face datasets are critically important for achieving the 3D
age-invariant face recognition and building a powerful 3D
morphable model (3DMM). The 3DMM is widely used in
the task of 3D face reconstructions from 2D images and 3D
scans [57]. With our 3D face aging method, one input face
can generate five faces of different ages, which can augment
the original dataset effectively. To demonstrate this, we
used original 50 faces and their augmented 300+50 faces to
establish two 3DMMs using a principal components analy-
sis (PCA)-based method [23] with unifying their face sizes
using general procrustes analysis (GPA) [47] and comparing
their generalization ability with an additional 300 subjects,
as shown in Fig. 18. For a fair comparison, we selected
the same number (44) of principal components (PCs) that
can explain 99.50%/97.94% in original/augmented 3DMM
of the training dataset variance. The average (± standard
deviation) distance between the reconstructed and original
facial meshes are 1.83 (± 0.31) mm and 1.65 (± 0.27) mm for
the original and augmented 3DMMs, respectively, and their
p-value is less than 0.005 using a paired-samples t-test. This
demonstrates that our method can significantly augment the
generalization ability of a 3DMM.

Fig. 19. Limitation of the proposed method. For example, facial hair (e.g.,
long beards) may lead to inaccurate generation of the chin region.

5 CONCLUSION AND FUTURE WORK

We devised a new MeshWGAN architecture with a multi-
task gradient penalty to model a continuous bi-directional
3D facial geometric aging. Various experiments showed
that our method can predict better facial geometry across
different age groups and produce facial geometries more
consistent with the input face in the same age group, and the
geometric aging process of our method is consistent with
previous anthropometric studies. Our model successfully
achieved continuous age transformations via age codes’
interpolation. However, our method has its limitation. One
is that the facial aging geometries are affected by facial hair
(e.g., long beards, see Fig. 19), which may result in inaccu-
rate generation of facial regions. This is because the training
dataset contains few such uncommon subjects. Besides, to
ensure enough training data in each age group, the age
ranges within these defined groups (especially 30-49) may
be broad. Developing a way to solve these limitations and
extending our work to broad 3D face-related translations are
directions well worth exploring in future studies.
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